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Abstract

The wave characteristics of Bragg reflections for a train of surface water waves from a series of submerged bottom breakwaters were
investigated numerically. A numerical model based on boundary discretization technique was developed to calculate the wave field. The
computational results were validated by comparing with analytical solutions in the literature. The wave fields induced by two types of bottom
breakwaters in the shapes of rectangular and trapezoidal with various formations of the breakwater trains were simulated to study the wave
characteristics. Variables investigated included the number of the breakwaters in the train, the height and width of the breakwaters, and the side
slope of the trapezoidal breakwaters. Certain notions with regard to the application of shoreline protections were addressed based on the results.
© 2016 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

It has been reported in the literature (Belzons et al., 1988;
Cho et al., 2004; Mei, 1985, among many others) that as gravity
water waves propagate over a periodic bed, in certain circum-
stances, resonance waves would occur in front of the area of the
wavy bed. This physical phenomenon is known as Bragg reso-
nance, which was first discovered by W.H. Bragg and W.L.
Bragg (1913) when they studied X-ray waves passing through
two parallel reflective crystals. They found that the highest
reflection of the X-ray emerges as the spacing between the
crystals is precisely multiple of the half wave-length of the
X-ray and named the reflection condition ‘Bragg Law’. This
phenomenon of Bragg reflection has also been observed in
surface water waves and has been adopted in the application of
shoreline protections (Ranasinghe and Turner, 2006;
Ranasinghe et al., 2010; Zhang et al., 2012, upon many others).
By placing a series of bottom breakwaters with proper forma-
tions in front of a shoreline, most of the incoming waves would
be reflected by the structures and thus reducing the wave energy
impacting the shoreline.

The phenomenon of Bragg reflection for surface water
waves has been tackled by many researchers. Miles (1967)
utilized the variational approximation method to investigate
gravity waves at a discontinuity in depth, and derived a formula
for the reflection coefficient caused by a small elevation change
of the bed. Mei (1985) showed that the dynamic mechanism for
the formation of sandbars is due to the sediment transport in the
boundary layer of the seabed. In order for a sandbar to form, the
sediment transport mechanism must be combined with certain
standing waves, and the Bragg reflection along the coast pro-
vides the mean to generate these standing waves. Kirby and
Anton (1990) extended Miles’ theorem by using Fourier Series
Expansion to reproduce the shape of a sandbar. They also
improved Miles’ results by deriving a close form formula for
the reflection coefficient. Guazzelli et al. (1992) and Cho and
Lee (2000) utilized the integral matching method through a
discretization of the bottom into successive steps to simulate
sloping bottoms. Integral equation techniques have been
applied to periodic breakwaters by Fernyhough and Evans
(1995) and to bottom depths by Black et al. (1971). In these
studies the resonant Bragg scattering from finite structural
arrays was recognized. Athanassoulis and Belibassakis (1999)
derived a method namely the ‘coupled mode’method which can
be applied to sloping bottoms. Hsu et al. (2002) compared wave
reflections for three types of fictitious sandbars with different
shapes of rectangular, cosine, and triangular by flume
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experiments. Their results showed that, in these three types of
sandbars, the rectangular sandbars produce the highest reflec-
tions. They also found that, with more than 8 sandbars, it is
possible to achieve near-full reflections.

The aim of this paper is to investigate numerically the wave
characteristics of Bragg reflections from various formations of
submerged bottom breakwater trains. The paper is arranged as
follows: The goverinig equation and boundary conditions of the
wave field were first defined and formulated. A numerical
model based on boundary discretization technique was devel-
oped to calculate the wave field. The numerical model was
validated by comparing the results with analytical solutions in
literatures. Wave fields induced by two types of submerged
bottom breakwater in the shapes of rectangular and trapozoidal
with various formations of the breakwater trains were simu-
lated. Investigations were focused on the wave characteristics of
Bragg reflections from the structures in the aspect of shoreline
protections. Certain notions regarding the practical design
guidelines were addressed and discussed based on the results.

2. Problem formulation

A train of rigid and impermeable bottom breakwaters fixed
in tandem on the seabed with full submergence in the water
with constant depth is considered, as depicted in Fig. 1. The
x-axis is on the averaged water level positive to the right and the
y-axis is on the vertical direction positive upward. Incident
water waves with constant amplitude and frequency propogate
over the structures along the x direction. The fluid is assumed to
be invisicid, incompressible and irrotational, and the wave
amplitude is small to the wave length such that the linear water
wave theorem is applicable. The breakwaters are in two types of
shapes, which are (1) rectangular and (2) trapezoidal, as illus-

trated in Fig. 1(a) and (b), respectively. The height of the break-
water is hs for both types of breakwaters. The width for the
rectangular breakwaters is w, and for the trapzoidal breakwaters
the top and bottom width are wt and wb, respectively. The
spacing between two consecutive breakwaters is S measured
from the centers of the breakwaters. The governing equation of
the problem and the associated boundary conditions are
detailed as follows.

2.1. Governing equation for the velocity potential

For inviscid incompressible fluid and irrotational flow, the
flow field can be represented by velocity potential Φ x y t, ,( ),
which is governed by the following equation:

∇ ( )=2 0Φ x y t, , (1)

where ∇2 is the Laplacian operator. For wave trains that
propagate with a constant frequency σ, the time variation of
Eq. (1) can be expressed as ei tσ and the velocity potential is then
simplified to the following form based on the periodicity in
time.

Φ x y t x y, , ,( )= ( )φ σei t (2)

where φ x y,( ) describes the distribution of the velocity
potential on the x–y plane and is independent of time.
Substitution of Eq. (2) into (1) yields the following differential
equation for φ x y,( ).

∇ ( )=2 0φ x y, (3)

Eq. (3) is the classical Laplace equation and the solution of
the equation is determined by the boundary conditions
described in the following.

2.2. Boundary conditions

The boundary conditions for the present work are summa-
rized as follows:

2.2.1. The linearized free water surface boundary condition
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where g is the acceleration of gravity.

2.2.2. Seabed and breakwater boundary conditions
The seabed and the breakwaters are considered to be rigid

and impermiable, which satify the zero normal velocity bound-
ary condition.

∂ ( )
∂

=
φ x y

n

,
0 (5)

where n is direction vector normal to the boundary.

2.2.3. Radiation condition at infinity
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Fig. 1. Definition sketch of (a) rectangular breakwaters (b) trapezoidal
breakwaters.
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