Available online at www.sciencedirect.com

ScienceDirect

computer
communications

ELSEVIER Computer Communications 31 (2008) 402-412

www.elsevier.com/locate/comcom

Overlay Weaver: An overlay construction toolkit

Kazuyuki Shudo *, Yoshio Tanaka, Satoshi Sekiguchi

Grid Technology Research Center, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2,
Tsukuba, Ibaraki 305-8568, Japan

Available online 14 August 2007

Abstract

A layered model of structured overlays has been proposed and it enabled development of a routing layer independently of higher-level
services such as DHT and multicast. The routing layer has to include other part than a routing algorithm, which is essential for routing.
It is routing process, which is common to various routing algorithms and can be decoupled from a routing algorithm.

We demonstrated the decomposition by implementing an overlay construction toolkit Overlay Weaver. It facilitates implementation
of routing algorithms and we could multiple well-known algorithms just in hundreds of lines of code with the toolkit. The decomposition
also enables multiple implementations of the common routing process. Two implementations the toolkit provides perform iterative and
recursive routing, respectively. Additionally, to our knowledge, the toolkit is the first feasibility proof of the layered model by supporting
multiple algorithms and the higher-level services.

Such modular design contributes to our goal, which is facilitation of rapid development of realistic routing algorithms and their appli-
cation. We demonstrates that Overlay Weaver supports the goal by conducting large-scale tests and comparisons of algorithms on a sin-

gle computer. The resulting algorithm implementations work on a real TCP/IP network as it is.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Overlay network; Structured overlay; Distributed hash table; Emulation

1. Introduction

It is essential for large-scale Internet-wide applications
to construct an application-level network in an autono-
mous and decentralized way. Such a network is called an
overlay network because it is based on the underlying phys-
ical network, but its structure is different from the underly-
ing network. An overlay provides elemental functions to
build distributed applications such as lookup and multi-
cast, and maintains performance and fault tolerance with
more than millions of computers.

It requires a fair amount of work to incorporate an over-
lay algorithm into application software. For example, dis-
tributed hash table (DHT), a representative application of
structured overlays, itself has thousands of lines of code at
least, because it needs various jobs like communication

" Corresponding author. Present address: Utagoe Inc., Tokyo. Tel.: +81
3 3461 1118; fax: +81 3 3461 1119.
E-mail address: shudo@computer.org (K. Shudo).

0140-3664/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2007.08.002

and storage management other than the overlay algorithm.
Its application must be larger and more complicated than it.

Dabek et al. proposed layered abstractions of structured
overlays [1]. They separated common services such as
DHT, multicast, and anycast from an underlying routing
layer. The model suggests that it enables separated design
and implementation of a routing layer named key-based
routing (KBR) from the common higher-level services.

The routing layer is monolithic even with the layered
abstractions. Routing algorithm is not the only part of
the routing layer, which has to perform other jobs includ-
ing communication. Furthermore, the routing layer has
to include other part than a routing algorithm, which is
the essential for routing. It is routing process, which is
common to various known routing algorithms. It can be
decoupled from a routing algorithm.

We demonstrated the decomposition by implementing
an overlay construction toolkit Overlay Weaver [2]. We
decoupled a routing algorithm from the common routing
process by designing a programming interface between


mailto:shudo@computer.org

K. Shudo et al. | Computer Communications 31 (2008) 402412 403

them. The interface has been able to support well-known
algorithms, Chord, Pastry, Tapestry, and Kademlia. Addi-
tionally, to our knowledge, the toolkit is the first feasibility
proof of the layered abstractions proposed by Dabek et al.
[1], because the toolkit provides the multiple routing algo-
rithms and multiple higher-level services such as DHT and
multicast.

The decomposition facilitates development of routing
algorithms. Implementations of the above-mentioned well-
known algorithms are just in hundreds of lines of code.
The decomposition also allows multiple implementations
of the common routing process to be combined with routing
algorithms. The toolkit provides two implementations which
perform iterative and recursive routing, respectively.

Such modular design contributes to our goal. It is facilita-
tion of rapid development of realistic routing algorithms and
their application. Overlay Weaver provides an emulator of
distributed environment to support the goal. It enables algo-
rithm developers to test and improve their algorithms with
large number of nodes on a single computer. The resulting
algorithm implementations work in a real environment.

The following section discusses related work. We show a
programming interface, which separates the routing pro-
cess from the algorithms in Section 3. Section 4 describes
the components and tools the toolkit provides and how
they support overlay design, implementation, evaluation,
and comparison. In Section 5, we demonstrate that we
could implement various well-known algorithms with little
code. We also present the results of tests and comparisons
of the algorithms on a large-scale.

2. Related work

MACEDON [3,4] and Mace [5] are overlay construction
software which support multiple routing algorithms as
does the Overlay Weaver.

A user describes an algorithm in MACEDON language,
which is like C/C++ but specific to the overlay description.
MACEDON translates the description into executable
C++ code. The generated code communicates using TCP
or UDP, and MACEDON can generate code for a network
simulator ns even though this is “partial support” [3].
MACEDON provides distributed hash table (DHT) imple-
mentations, i.e., Chord and Pastry.

The amount of code MACEDON requires to describe
an algorithm is comparable to Overlay Weaver. The differ-
ence is only up to 50% of the amount of code for Overlay
Weaver (Section 5.1). MACEDON reduced the amount by
introducing a domain-specific language and Overlay Wea-
ver achieved similar results by the separation of routing
process and algorithms. Possible problems each approach
introduces are as follows. MACEDON’s approach involves
a higher learning cost for dedicated language. On the other
hand, routing driver (Section 3) of Overlay Weaver pro-
vides no specific support to implementation of unstruc-
tured overlays, which require a larger amount of code.

However, it is possible to implement unstructured overlays
directly using the toolkit’s messaging services (Section 4).

Experiments with MACEDON have been performed on
an Internet emulator ModelNet [6]. The number of under-
lying computers ranged from 2 to 50 in the emulation. The
maximum number of emulated nodes was only 1000 and
only experiments on overlay construction (routing table
stabilization) was conducted on such a scale. Compared
with this, we demonstrate the emulation of 4000 nodes,
which is discussed in Section 5.2.

The original length of IDs in Chord is 160 bits and 128 bits
in Pastry. but both are 32 bits in MACEDON. The integer
type int the dedicated language provides is 32 bits and the
shortened ID length might be a natural consequence of this.
We describe an algorithm in a general-purpose language
(Java) for Overlay Weaver and the expressive power of the
language is sufficient to represent any algorithm.

Mace [5] is a successive project following MACEDON.
The ID length is 160 bits in Pastry, and this is not
shortened.

An algorithm description for MACEDON or Mace is
dedicated to one of routing styles, iterative, and recursive.
In opposition to them, a single description for Overlay
Weaver can work in the both styles.

There are libraries that implement structured overlays,
such as Bamboo [7,8], Chimera and Tapestry [9,10], and
Khashmir [11], FreePastry [12], SharkyPy [13], and OPeN
[14] that are all available. However, all the libraries support
a single algorithm and we do not have a choice.

P2psim [15] is a simulator for peer-to-peer protocols. It
provides multiple algorithm implementations such as
Chord, Accordion, Koorde, Kelips, Tapestry, and Kadem-
lia. They are all DHT, which are structured overlays. In
the Accordion proposal [16], Li et al. emulated 3000 nodes
with p2psim to compare the proposed algorithm with Chord.

Simulation has the advantage being reproducible. Emu-
lation of a concurrent system, which is what Overlay Wea-
ver does, i1s non-deterministic and its results are not
constant. Algorithm implementations for p2psim on the
other hand do not work on a real network. They require
a relatively large amount of code because they include
low-level processes such as remote procedure calls (RPC).
The amount of code is several times the length of code
for Overlay Weaver and MACEDON (Section 5.1).

3. Decomposition of routing layer

Dabek et al. called routing process on structured over-
lays key-based routing (KBR) [1]. Following their model,
higher-level services are constructed on the KBR layer,
which is tier 0. Such services include DHT, multicast, any-
cast, and message delivery.

Overlay Weaver also followed this model and the rout-
ing layer is separated from the DHT service and multicast-
ing service. The model enables choices of multiple
components for each layer and applications are combined
with various routing algorithms without any modifications.



Download English Version:

https://daneshyari.com/en/article/449362

Download Persian Version:

https://daneshyari.com/article/449362

Daneshyari.com


https://daneshyari.com/en/article/449362
https://daneshyari.com/article/449362
https://daneshyari.com

