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Abstract

Streamflow is often intermittent in arid and semi-arid regions. Stochastically simulated data play a key role in managing water resources with
intermittent streamflows. The stochastic modeling of intermittent streamflow that incorporates the seasonality of key statistics is a difficult task. In the
current study, the product model was tested to simulate the intermittent monthly streamflow by employing the periodic Markov chain (PMC) model for
occurrence and the periodic gamma autoregressive (PGAR) and copula models for amount. The copula models were tested in a previous study for the
simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data; however, the copula models have
never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system in the present study. A few drawbacks of
the PGAR model were identified, such as significant underestimation of minimum values on an aggregated yearly time scale and restrictions of the
parameter boundaries. Conversely, the copula models do not present such drawbacks but show feasible reproduction of key and operational statistics. We
concluded that the copula models combined with the PMC model is a feasible method for the simulation of intermittent monthly streamflow time series.
© 2014 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Synthetic data obtained from stochastic models play a key
role in analyzing extreme events, such as droughts, and in
evaluating alternative designs and operating rules of hydraulic
structures, especially in arid or semi-arid regions (Lee and
Salas, 2006; Salas, 1993; Salas and Abdelmohsen, 1993; Salas
et al., 2006; Stedinger et al., 1983; Stedinger and Tasker, 1985).
Many alternatives have been developed, which originated from
a simple autoregressive model (Koutsoyiannis, 1994; Kwon
et al., 2007; Lall, 1995; Lall et al., 1996; Lee and Ouarda, 2010;
Lee and Salas, 2011; Lee et al., 2010; Ouarda et al., 1997; Salas
and Abdelmohsen, 1993; Salas and Boes, 1980; Salas and Lee,
2010; Srinivas and Srinivasan, 2001, 2006; Stedinger and
Vogel, 1984; Sveinsson et al., 2003).

A few characteristics remain difficult to reproduce, such as
long-term persistency and intermittency. Long-term persistency
(Lee and Ouarda, 2010; Sharma et al., 1998; Young and Holt,
2007) implies the auto-dependency structure of more than a
monthly time scale (e.g., yearly). Intermittency (Koutsoyiannis,

2006) is identified by one or more zero values between non-zero
values in a time series when values represent events or amounts
of streamflows or rainfall. For example, in the Colorado River
system, the monthly datasets of some tributary stations display
intermittency.

Few effective models have been developed for generating
monthly streamflow data with intermittency because of struc-
tural difficulties inherent in modeling seasonality and intermit-
tency. Chebaane et al. (1995) applied the product model, which
comprises both amount and occurrence. The occurrence
process has been described using the periodic discrete
autoregressive (PDAR) model; the amount process has been
described using the periodic autoregressive moving average
(PARMA) model. The occurrence process must be modeled to
preserve the statistical behavior of historical records. For
example, the occurrence probability of a certain month in his-
torical records should be reproduced by the simulated data.

We hypothesized that the physical process presented by the
PARMA model is periodically stationary and that the marginal
noise processes are normally distributed. Because monthly
streamflow data are not normally distributed, the data needs to
be transformed. The process of fitting the model to the trans-
formed data and then back-transforming the data results creates
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bias toward the statistics simulated to describe the original
space. Instead of this transformation, a model with a skewed
distribution (i.e., gamma) was developed with preserving lag-1
serial correlation on a seasonal time series (Fernandez and
Salas, 1986), namely the periodic gamma autoregressive
(PGAR) model. However, the PGAR model requires a very
complicated procedure to simulate the sequences, and its
parameter space is limited. Meanwhile, Lee and Salas (2011)
developed the copula-based stochastic model and applied it to a
yearly time series. The results showed that the copula-based
stochastic simulation model easily captures the key statistics of
historical data and does not require any transformation. Fur-
thermore, a number of applications for copula have been popu-
larly reported in literature, including drought analysis (Shiau
et al., 2007; Song and Singh, 2010; Wong et al., 2010) and flood
frequency (Favre et al., 2004; Kao and Govindaraju, 2008;
Zhang and Singh, 2006).

Therefore, we applied the copula-based model to monthly
time scale data. In the current study, two models for the amount
process (the PGAR and copula models) and one model for the
occurrence process (the PDAR model) were tested to simulate
intermittent monthly streamflow. The pros and cons of the
models were inspected, and the model was applied to the Colo-
rado River system.

2. Proposed modeling approach

To model an intermittent streamflow time series, the product
of occurrence and amount is denoted as follows:

Y X Zν τ ν τ ν τ, , ,= (1)

where ν = 1,2,. . .,N and τ = 1,2,. . .,ω, representing years and
seasons, respectively; N and ω are the numbers of years and
seasons, respectively. Note that when the data time scale is
monthly, ω = 12. Xν,τ denotes the binary (0 or 1) occurrence
process; Zν,τ denotes the amount process; and Yν,τ is the product
of the two processes. The traditional PDAR(1) model was
applied to simulate the occurrence process, Xν,τ. The PGAR
model was applied to simulate the amount process. The
Bivariate Normal Copula with Gamma marginal distribution
(BNCG) was also used to simulate the amount process.

2.1. Occurrence process

2.1.1. Order-1 periodic discrete autoregressive (PDAR(1))
model

The PDAR(1) is defined as follows:

X V X V Wν τ ν τ ν τ ν τ ν τ, , , , ,= + −( )−1 1 (2)

where Xν,τ is a periodic dependent Bernoulli process; and Wν,τ

and Vν,τ are independent Bernoulli processes with probabilities
P[Vν,τ = 1] = γτ and P[Wν,τ = 1] = δτ, respectively. Chebaane et al.
(1995) showed that the PDAR(1) model is equivalent to a
periodic Markov chain (PMC) model, in which the elements of
the transition probability matrix vary by season as

p i j P X j X iτ ν τ ν τ, , ,( ) = = =[ ]−1 (3)

where i, j = 0 or 1.

The transition probability matrix is expressed as a function
of the parameters of PDAR(1) such that
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The limiting distribution P[Xν,τ = 1] = μτ is given by

μ γ μ γ δτ τ τ τ τ= + −( )−1 1 (5)

The parameters of PMC are estimated by
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where nτ(i,j) is the number of times that the variable Xν,τ in state
i at time τ − 1 passes to state j during the period τ; and
nτ(i) = nτ(i,0) + nτ(i,1) is the number of times that Xν,τ is in state
i at period τ. γτ and δτ are easily estimated from the relationship
outlined in Eqs. (4) and (6).

2.2. Amount process

Two models were applied to simulate the amount process of
the product model in the current study: (1) PGAR and (2)
bivariate normal copula. These models are not based on Gauss-
ian marginal distributions. Instead, PGAR assumes that the
marginal distribution is gamma, while the bivariate normal
copula model can have any feasible distribution for a marginal
distribution. In practical applications, a gamma marginal distri-
bution is applied for the bivariate normal copula even if there is
no prior limitation for selecting marginal distribution because
(1) the gamma distribution is one of the most frequently
selected distribution types for hydrological frequency analysis;
(2) it is comparable to the PGAR model for the marginal dis-
tribution; and (3) it is representative of the positively skewed
distributions that are typical in historical streamflow data.

For periodic models, Fourier series analysis may be used to
model the periodic patterns of certain statistics. Fourier series
analysis has been a popular method for use in stochastic models
in which the time scale is relatively small, such as weeks and
days. Katz and Parlange (1995) used this procedure to capture
the diurnal cycle in hourly rainfall data. In the present study, the
Fourier series was applied to smooth out periodic patterns,
especially the skewness and lag-1 correlation, which have high
degrees of uncertainty in parameter estimations.

2.2.1. Periodic gamma autoregressive (PGAR)
The gamma distribution is denoted as
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where α > 0, β > 0 and z > λ. If λ = 0, then Eq. (7) presents a
two-parameter gamma distribution represented as
Z ~ gamma(α, β and λ) or gamma(α, β). The relationships
between the distribution parameters and the key statistics are
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2and for -gamma distribution (8)
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