
Implementation and experimental performance evaluation of a hybrid
interrupt-handling scheme

K. Salah *, A. Qahtan
Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, P.O. Box 5066, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 9 April 2008
Received in revised form 27 September
2008
Accepted 2 October 2008
Available online 14 October 2008

Keywords:
High-speed networks
Operating systems
NAPI
Linux
Interrupts

a b s t r a c t

The performance of network hosts can be severely degraded when subjected to heavy traffic of today’s
Gigabit networks. This degradation occurs as a result of the interrupt overhead associated with the high
rate of packet arrivals. NAPI, a packet reception mechanism integrated into the latest version of Linux net-
working subsystem, was designed to improve Linux performance to suit today’s Gigabit traffic. NAPI is
definitely a major step up from earlier reception mechanisms; however, NAPI has shortcomings and its
performance can be further enhanced. A hybrid interrupt-handling scheme, which was recently proposed
in Salah et al. [K. Salah, K. El-Badawi, F. Haidari, Performance Analysis and Comparison of Interrupt-Han-
dling Schemes in Gigabit Networks, International Journal of Computer Communications, Elsevier, Amster-
dam 30 (17) (2007) 3425–3441], can better improve the performance of Gigabit network hosts. The
hybrid scheme switches between interrupt disabling–enabling (DE) and polling (NAPI). In this paper,
we present and discuss major changes required to implement such a hybrid scheme in the latest version
of Linux kernel 2.6.15. We prove experimentally that the hybrid scheme can significantly improve the
performance of general-purpose network desktops or servers running network I/O-bound applications,
when subjecting such network hosts to both light and heavy traffic load conditions. The performance
is measured and analyzed in terms of throughput, packet loss, latency, and CPU availability.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Using today’s general-purpose Gigabit network adapters (also
termed as NICs), an incoming packet gets transferred (or DMA’d)
through the PCI bus from the NIC to a circular buffer in the kernel
space known as DMA Rx Ring. After the packet has been success-
fully DMA’d, the NIC generates an interrupt to notify the kernel
to start protocol processing of the incoming packet. During proto-
col processing, other packets may arrive and get queued into the
DMA Rx Ring. Protocol processing typically involves TCP/IP pro-
cessing of the incoming packet and delivering it to user applica-
tions. The packet does not need to be delivered to user
applications if the receiving host is configured for IP forwarding,
routing, filtering or NATing.

The performance of network hosts can be significantly degraded
when subjected to heavy traffic load such as that of Gigabit net-
works, and thus resulting in poor host performance perceived by
the user. This is because every incoming packet triggers a hardware
interrupt, which involves a context switching of saving and restor-

ing processor’s state and also in a potential cache/TLB pollution.
More importantly, interrupt-level handling, by definition, has an
absolute priority over all other tasks. If the interrupt rate is high
enough, the system will spend all of its time responding to inter-
rupts, while nothing else would be performed. This will cause
the system throughput to drop to zero. This situation is called re-
ceive livelock [1]. In this situation, the system is not deadlocked,
but it makes no progress on any of its tasks, causing any task
scheduled at a lower priority to starve or have no chance to run.

A number of schemes to mitigate interrupt overhead and re-
solve receive livelock exists in the literature. Among the most pop-
ular ones are normal interruption, interrupt disabling and
enabling, interrupt coalescing, and polling. In normal interruption,
every incoming packet causes an interrupt to trigger protocol pro-
cessing by the kernel. Typically protocol processing is performed
by a deferrable and reentrant high-priority kernel function (e.g.,
tasklet in Linux). The idea of interrupt disable-enable (a.k.a. DE)
scheme [2,3] is to have the received interrupts of incoming packets
turned off (or disabled) as long as there are packets to be processed
by kernel’s protocol stack, i.e., the protocol buffer is not empty.
When the buffer is empty, the interrupts are turned on again (or
re-enabled). This means that protocol processing of packets by
the kernel is processed immediately and at interrupt priority level.
Any incoming packets (while the interrupts are disabled) are
DMA’d quietly to protocol buffer without incurring any interrupt

0140-3664/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2008.10.001

* Corresponding author. Tel.: +96638604493.
E-mail addresses: salah@kfupm.edu.sa (K. Salah), kahtani@kfupm.edu.sa

(A. Qahtan).

Computer Communications 32 (2009) 179–188

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

mailto:salah@kfupm.edu.sa
mailto:kahtani@kfupm.edu.sa 	
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


overhead. With the scheme of interrupt coalescing (IC) [4], the NIC
generates a single interrupt for a group of incoming packets. This is
opposed to normal interruption mode in which the NIC generates
an interrupt for every incoming packet. There are two IC types:
count-based IC and time-based IC. In count-based IC, the NIC gen-
erates an interrupt when a predefined number of packets has been
received. In time-based IC, the NIC waits a predefined time period
before it generates an interrupt. Finally, the basic idea of polling is
to disable interrupts of incoming packets altogether and thus elim-
inating interrupt overhead completely. In polling [1,5–8], the OS
periodically polls its host system memory (i.e., protocol processing
buffer or DMA Rx Ring) to find packets to process. In general,
exhaustive polling is rarely implemented. Rather, polling with quo-
ta or budget is usually the case whereby only a maximum number
of packets is processed in each poll in order to leave some CPU
power for application processing.

In [3], we utilized both mathematical analysis and discrete-
event simulation to study the performance of those most popular
interrupt-handling schemes which included normal interruption,
polling, interrupt disabling and enabling, and interrupt coalescing.
For polling, we studied both pure (or FreeBSD-style) polling and Li-
nux NAPI polling. The performance was studied in terms of key per-
formance indictors which included throughput, system latency, and
CPU availability (i.e., the residual fraction of CPU bandwidth left for
user applications). Based on the study carried out in [3], it was con-
cluded that no particular interrupt handling scheme gives the best
performance under all load conditions. Under light and heavy traffic
loads, it was shown that the scheme of disabling and enabling inter-
rupts (DE) outperforms, in general, all other schemes in terms of
throughput and latency. However, when it comes to CPU availabil-
ity, polling is the most appropriate scheme to use, particularly at
heavy traffic load. Based on these key observations and in order to
compensate for the disadvantages of DE scheme of poor CPU avail-
ability, we proposed in [3] a hybrid scheme that combines both DE
and polling. Such a hybrid scheme would be able to attain peak per-
formance under both light and heavy traffic loads by employing DE
at light load and polling at heavy load.

In [11], we presented preliminary experimental results to show
that the performance of I/O bound applications can be enhanced
when using the Hybrid scheme. In this paper we considerably ex-
tend the work presented in [11] and provide in-depth details of
implementing the Hybrid scheme in the latest Linux version
2.6.15. The paper also shows how to measure experimentally the
performance of Hybrid, DE, and NAPI. In addition, the paper ad-
dresses important implementation issues which include identify-
ing the switching point between DE and NAPI, real-time
measurement of incoming traffic rate, and the selection of proper
NAPI budget or quota size during the polling period. The perfor-
mance of the Hybrid scheme is evaluated in terms of throughput,
latency, CPU availability, packet loss, and interrupt rate.

The rest of the paper is organized as follows. Section 2 gives a
brief background and related work on the hybrid scheme. It dis-
cusses how different our hybrid scheme from those proposed in
the literature. Section 3 details the inner-workings of Linux NAPI.
Section 4 presents major changes required by network device dri-
ver to implement DE and Hybrid in latest version of Linux 2.6.15.
Also the section addresses important issues as operation overhead,
adjusting NAPI budget, identifying the cliff point, and switching
mechanism. Section 5 describes experimental setup, then Section
6 presents performance measurements. Finally, Section 7 con-
cludes the study and identifies future work.

2. Hybrid scheme

A hybrid scheme of normal interruption and polling was first
proposed in [2]. Later, it was implemented and utilized in [5,8–

10]. In this hybrid scheme, normal interrupt was used under both
light and normal network traffic load, whereas polling was used
under heavy network traffic load. In sharp contrast, our hybrid
scheme (which we initially proposed in [3]) differs from previously
proposed scheme in three significant ways: (1) Under light and
normal loads, our hybrid scheme utilizes the scheme of DE as op-
posed to normal interruption which was used in [2,5,8–10]. (2)
Our hybrid scheme switches between DE and NAPI based on the
estimated incoming traffic rate. (3) The switching point is identi-
fied experimentally, rather than arbitrarily.

It was demonstrated in [3] that normal interruption performs
relatively poorly under light and normal traffic loads in terms of
system throughput, CPU availability, and latency. This was due to
the fact that normal interruption introduces interrupt overhead
for each packet arrival and thereby leaving limited CPU power
for IP processing and user applications. On the other hand, DE gave
acceptable performance in terms of system throughput, CPU avail-
ability, and latency under low and normal traffic loads.

To identify the severity of traffic load conditions, and as op-
posed to other hybrid schemes proposed in [2,5,8–10], our hybrid
scheme switches between DE and NAPI based on the estimated
incoming packet arrival rate. In particular, our hybrid scheme esti-
mates the traffic rate periodically and uses two thresholds for
switching. As will be discussed in Section 4.2, two thresholds are
used to minimize repeated switchings (or oscillation) around the
saturation point in the presence of a traffic load that is highly fluc-
tuating at the point of saturation. Moreover, the saturation point
was not identified arbitrary but using before-hand experimenta-
tion discussed in Section 4.2. On the other hand, different ways
to identify severity of traffic load conditions as well as the switch-
ing point were used in [2,5,8–10].

In [2,9,10], the utilization (or level of occupancy) of application
or socket receive buffers was used. A receive buffer that has a uti-
lization of 5% indicates low traffic load, while a buffer that has a
utilization of 70% indicates high utilization. Switching based on
buffer utilization has major drawbacks. First, a host system has
multiple buffers of interest that could potentially be used to indi-
cate traffic overload conditions, and therefore making it impracti-
cal to implement a comprehensive solution. For example, for IP
forwarding hosts, socket or protocol processing buffer can be
used. In application hosts such as web servers, user application
buffer is more appropriate. In particular, the protocol receiver
buffer was used in [2], while in [9,10], the application receive buf-
fer was used. Secondly, the buffer utilization can be high for a
number of reasons other than traffic load, e.g. starvation or bursty
traffic. Starvation of a consumer process (i.e., user application or
protocol processing) is a possibility as the CPU power is being
allocated for other highly important tasks or processing. In addi-
tion, instantaneous traffic burst can fill up the buffer very quickly
and thus cause sharp increase in buffer utilization. Thirdly, selec-
tion of utilization levels or thresholds is somewhat and always
done arbitrarily. According to [2], determining the upper and low-
er level of occupancy thresholds is arbitrary and in reality not a
trivial task.

In [8], a watchdog timer is used for switching between normal
interruption and polling. Upon a packet arrival a predefined watch-
dog time is started. If a packet is not removed within this prede-
fined time through polling, an interrupt is generated. In today’s
network adapters or host hardware, such a feature of monitoring
a packet consumption is not supported. A special hardware support
has to be introduced to generate an interrupt if a packet is not re-
moved from the DMA Rx Ring within the predefined amount of
time. In addition, determining a proper value for the watchdog
timer is not trivial, and often defined arbitrarily. A Small value will
resort to normal interruption while a large value will resort to
polling.

180 K. Salah, A. Qahtan / Computer Communications 32 (2009) 179–188



Download English Version:

https://daneshyari.com/en/article/449387

Download Persian Version:

https://daneshyari.com/article/449387

Daneshyari.com

https://daneshyari.com/en/article/449387
https://daneshyari.com/article/449387
https://daneshyari.com

