
Short Communication

On modeling multiplexed VBR videoconference traffic
from H.263 video coders

P. Koutsakis *

Department of Electrical & Computer Engineering, McMaster University, ITB-A318, 1280 Main Street West, Hamilton, Ont., Canada L8S 4K1

Received 14 April 2007; accepted 30 October 2007
Available online 12 November 2007

Abstract

Due to the burstiness of video traffic, video traffic modeling is very important in order to evaluate the performance of future wired and
wireless networks. In this letter, we build a highly accurate Discrete Autoregressive model to capture the behavior of multiplexed H.263
videoconference movies from VBR coders.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Videoconference traffic is expected to be a substantial
portion of the traffic carried by emerging wired and wire-
less networks [8,12]. For Variable Bit Rate (VBR) coded
video, statistical models are needed to design networks
which are able to guarantee the strict Quality of Service
(QoS) requirements of video traffic, in terms of video
packet delays and video packet dropping.

H.263 is a video standard that can be used for compress-
ing the moving picture component of audio-visual services
at low bit rates [1]. Although H.264 has been recently intro-
duced as the new video coding standard, H.263 is still very
widely used [3,13]. The problem of modeling H.263 video
traffic has been addressed in a few papers in the literature
(e.g., [15,16]). Videoconference traffic, however, has some
inherent characteristics (e.g., very high autocorrelation)
which differentiate the problem of its modeling from that
of modeling video traffic.

In this work, we build a model which accurately cap-
tures the behavior of multiplexed H.263 videoconference
traces. To the best of our knowledge, this is the first work

in the literature which addresses the specific problem. Very
few other papers in the literature (e.g., [17]) have consid-
ered the same problem, but all of them have actually used
low-rate versions of movies, i.e., not videoconference
traces, for their work.

2. The Pearson type V distribution fit

In [2], Heyman et al. analyzed three H.261 videoconfer-
ence sequences and found that the marginal distributions
for all the sequences could be described by a gamma (or
equivalently negative binomial) distribution. In [15], the
authors study one videoconference sequence and another
sequence, from a football game from a H.263+ coder with
a high degree of compression and note that the negative
binomial distribution provides a good approximation to
the distribution of the number of bits per video frame.

In our work, we have studied three different long
sequences (‘‘Office Cam’’, ‘‘ARD Talk’’, ‘‘N3 Talk’’, i.e.,
a camera showing the events within an office and two talk
shows) of low motion H.263 VBR encoded videos, from
Reisslein and Fitzek [4]. The length of the videos varies
from 45 to 60 min and the data for each trace consists of
a sequence of the number of cells per video frame. We have
investigated the possibility of modeling the traces with a
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number of well-known distributions and our results have
shown that the best fit (not a perfect fit, but a very good
one) among these distributions for modeling a single movie
is achieved for all traces examined with the use of the Pear-
son type V distribution (also known as the inverted gamma
distribution). The Probability Density Function (PDF) of a
Pearson type V distribution with parameters (a,b) is
f(x) = [x�(a+1)e�b/x]/[b�aC(a)], for all x > 0, and zero other-
wise. The mean and variance are given by the equations:
Mean = b/(a � 1), Variance = b2/[(a � 1)2(a � 2)]. The
parameters a, b for each trace were computed based on
the trace’s mean and variance.

To test, statistically, which distribution provides a good
fit for the above traces, we have used Q–Q plots. The Q–Q
plot is a powerful goodness-of-fit test [2,11], which graphi-
cally compares two data sets in order to determine whether
the data sets come from populations with a common distri-
bution (if they do, the points of the plot should fall approx-
imately along a 45-degree reference line). More specifically,
a Q-Q plot is a plot of the quantiles of the data versus the
quantiles of the fitted distribution (a z-quantile of X is any
value x such that Pr(X 6 x) = z).

In Fig. 1, we have plotted the 0.03-, 0.06-, 0.09-, . . .,
quantiles of the actual ‘‘office cam’’ trace versus the respec-
tive quantiles of the various distribution fits (all points in
both axes are in bytes). The results were common for all
traces under study (the respective Figures are omitted here
due to space limitations), showing that the Pearson V dis-
tribution fit is the best in comparison to the gamma, log-
normal and exponential distributions, which are
presented here (comparisons were also made with the neg-
ative binomial and Pareto distributions, which were also
worse fits than the Pearson V). The Pearson V distribution
provides not only the best fit among all the examined dis-
tributions, but an excellent fit in itself, as for more than
90% of the distributions of the three studied traces, the
points of the Q–Q plots fall either completely along the
45-degree reference line or very close to it. Still, the auto-
correlation coefficient of videoconference traces is always
very large, i.e., videoconference traffic is highly correlated
between successive frames; this high autocorrelation can
obviously never be perfectly ‘‘captured’’ by a distribution
generating independently frame sizes according to a

declared mean and standard deviation, and therefore none
of the fitting attempts (including the Pearson V), as good as
they might be, can achieve perfect accuracy.

3. The DAR(1) model

Autoregressive models have been used in the past to
model the output bit rate of VBR encoders, e.g. [5,6]). A
Discrete Autoregressive model of order p, denoted as
DAR(p) [7], generates a stationary sequence of discrete
random variables with an arbitrary probability distribution
and with an autocorrelation structure similar to that of an
Autoregressive model. DAR(1) is a special case of a
DAR(p) process. A DAR(1) process is a Markov chain
with discrete state space S and a transition matrix:
P = qI + (1 � q) Q (1), where q is the autocorrelation coef-
ficient, I is the identity matrix and Q is a matrix with
Qij = p(j) for i, j �S. Autocorrelations are usually plotted
for a range W of lags. The autocorrelation is calculated
by the formula q(W) = E[(Xi � l)(Xi + w � l)]/ r2 (2),
where l is the mean and r2 the variance of the frame size
for a specific video trace. As in [2], where a DAR(1) model
with negative binomial distribution was used to model the
number of cells per frame of VBR teleconferencing video,
we want to build a model based only on parameters which
are either known at call set-up time or can be measured
without introducing much complexity in the network.
DAR(1) provides an easy and practical method to compute
the transition matrix and gives us a model based only on
four physically meaningful parameters, i.e., the mean,
peak, variance and the lag-1 autocorrelation coefficient q
of the offered traffic (which is typically very high for video-
conference sources). According to [10], the DAR(1) model
can be used with any marginal distribution.

More specifically, in our model the rows of the Q

matrix consist of the Pearson type V probabilities (f0,
f1, . . . fk, FK), where FK = Rk > Kfk, and K is the peak rate.
Each k, for k < K, corresponds to possible source rates
less than the peak rate of K. The lag-1 autocorrelation
coefficient q is estimated by Equation (2) to be equal to
0.943 for the office camera trace, 0.867 for the ARD Talk
trace and 0.872 for the N3 Talk trace. From the transition
matrix in (1) it is evident that if the current frame has, for
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Fig. 1. Q–Q plot for the office camera trace.
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