
Seamless transport service selection by deploying a middleware q

Sven Hessler *, Michael Welzl

University of Innsbruck, Institute of Computer Science, Technikerstr. 21a, 6020 Innsbruck, Austria

Available online 10 January 2006

Abstract

Despite the many research efforts at the transport layer (SCTP, DCCP, etc.), new innovations in that area hardly ever make it into the
TCP/IP stacks of standard end systems. We believe that this is due to lack of a flexible interface to the application as well as a lack of
transparency – a problem that could be solved by introducing a middleware above TCP/IP. In this paper, we present the architecture of
our middleware, and show the importance of congestion awareness by simulations. In addition, we explain how to force congestion con-
trol on existing applications using our middleware, show the benefits of doing so with simulations, and finally discuss the impact of our
middleware towards a better utilization of the network and a more suitable service for the user software.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Congestion control; Middleware; DCCP; Protocols

1. Introduction

While many new Internet applications with specific
requirements to the network emerge, ranging from peer-
to-peer file-sharing tools to highly complex Grid comput-
ing software, the typical Internet end system provides only
two different transport services:

(1) Unreliable datagram delivery (based on the User
Datagram Protocol, UDP)

(2) Reliable in-order delivery of a consecutive data
stream (based on the Transmission Control Proto-
col, TCP)

This has not changed much since the 1970s; given the
many new developments at the application layer, it seems
hard to believe that these two services – TCP, which
realizes reliable in-order delivery of a consecutive byte
stream, and UDP, which merely brings the IP ‘‘best
effort’’ service to the transport layer – will suffice forever.
Yet, although an immense amount of research on trans-

port protocol enhancements for potential successors of
TCP and UDP is carried out, the results of this research
hardly seem to make it into the operating systems of our
personal computer. We believe that one of the reason for
this is the socket interface, which lacks the flexibility and
transparency that would be needed to gradually enhance
the transport layer without having to change the applica-
tions that use it.

We propose to add a middleware on top of TCP/IP,
thereby providing a unique service oriented interface and
realizing a certain degree of transparency. We believe that
our middleware could enable the deployment of new trans-
port services, no matter if they are realized as TCP alterna-
tives or even as actual end-to-end QoS with strict
guarantees.

The rest of this paper is organized as follows: Section 2
gives a survey of the state of the art of research on Internet
transport protocols and their prospective successors; Sec-
tion 3 illustrates how the network and the applications ben-
efit from congestion awareness; in Section 4 we first give a
detailed description of the design and the functions of our
middleware and present simulations showing how existing
congestion-ignorant applications could be forced to use
TCP-friendly transport protocols. Section 5 summarizes
our findings, discusses potential implications of our mid-
dleware, and presents further steps of research.

0140-3664/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.11.015

q This research is supported by the Austrian Science Fund (FWF).
* Corresponding author.

E-mail addresses: sven.hessler@uibk.ac.at (S. Hessler), michael.
welzl@uibk.ac.at (M. Welzl).

www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 630–637

mailto:sven.hessler@uibk.ac.at
mailto:michael. welzl@uibk.ac.at
mailto:michael. welzl@uibk.ac.at


2. State of the Art

According to an investigation in [1] TCP is still the pre-
valent transport protocol with a share of approximately
83%. Nevertheless the traffic composition changes all the
time, and as the Internet grows, new applications arise.
Following the traditional ones (file download and remote
login) and the rise of the World Wide Web, an important
application class that has emerged is real-time streaming
media, encompassing live radio or TV transmissions, Inter-
net telephones and video conferencing tools. Such applica-
tions differ from the typical earlier applications in that they
have different requirements for the transport layer, e.g.,
they do not necessarily require reliability, but timely trans-
mission of data.

2.1. Transport layer developments

While UDP merely adds identification of different com-
municating entities at a single site (port numbers) and data
integrity (checksum) to the ‘‘best effort’’ service provided
by the IP protocol, TCP encompasses a variety of
functions:

Reliability. Connections are set up and torn down; miss-
ing segments are retransmitted. If the connections breaks,
the application is informed.

Flow control. The receiver is protected against overload.
In-order delivery. Segments are ordered according to

sequence numbers by the receiver.
Congestion control. The network is protected against

overload by combining a variety of mechanisms, e.g.

• Ack-clocking helps to ensure network stability – rough-
ly, in equilibrium, no packet enters the network unless a
packet leaves the network.

• Rate control is used to reduce the sender’s rate in
response to congestion, following a rule called ‘‘Additive
Increase, Multiplicative Decrease’’ (AIMD) for reasons
of network stability and fairness.

• Round-trip-time estimation at the sender is carried out
by monitoring received acknowledgments. This function
is important to fine-tune the other mechanisms.

Congestion control consists of several intertwined algo-
rithms; together, they make TCP a somewhat complex sys-
tem with many setscrews to fine-tune it. This does not pose
a problem in practice because its implementation is entirely
left up to operating system designers and parameters are
hardly changed.

As mentioned above, the most complex part of TCP is
without a doubt its congestion control functionality.
When it was added to TCP to protect the network from
overload and ensure its stability [2], this appeared to be a
sensible choice because TCP was the prevalent protocol,
and congestion control in TCP is combined with its win-
dow-based flow control, which was already available in
the protocol. In the case of UDP, implementing conges-

tion control is entirely left up to application designers –
and it is clearly necessary to have at least some kind of
congestion control in order to maintain the stability of
the Internet [3].

While applications using UDP should contain a conges-
tion control mechanism that ensures fairness towards TCP
(‘‘TCP-friendliness’’), the window-based stop-and-go
behavior and heavy rate fluctuations of TCP are a poor
match for real-time streaming media applications. Thus,
a large amount of research on more suitable (‘‘smoother’’)
yet TCP-friendly congestion control has been carried out;
some examples are TFRC [4], RAP [5], LDA+ [6] and
Binomial Congestion Control [7]. An overview is given in
[8].

2.1.1. The Datagram Congestion Control Protocol

The fact that the burden of implementing a congestion
control mechanism is placed upon the application design-
er has only recently been acknowledged: the ‘‘Datagram
Congestion Control Protocol’’ (DCCP), which is current-
ly undergoing IETF standardization, is a means to sup-
port applications that do not require the reliable
transport of TCP but should nevertheless perform
(TCP-friendly) congestion control [9]. DCCP can be
regarded as a framework for such mechanisms which
provides a wealth of additional features, encompassing
partial checksums – this makes it possible for an applica-
tion to utilize corrupt data instead of not having it deliv-
ered at all (corrupt data are suitable for certain video
and audio codecs). Combined with the ‘‘Data Checksum
Option’’, partial checksums can also be used to circum-
vent the common problem of corruption being interpret-
ed as a sign of congestion.

2.1.2. The Stream Control Transmission Protocol

The ‘‘Stream Control Transmission Protocol’’ (SCTP) is
another new transport protocol which, like DCCP, is not
yet commonly available in the Internet. Unlike DCCP, it
is already standardized and ready for deployment [10].
SCTP was designed to transfer telephone signaling messag-
es over IP networks, but is capable of broader applications.
Among other things, it extends the TCP service model by
separating reliability from in-order delivery. SCTP pro-
vides the following features [11]:

Multi-stream support – logically independent user mes-
sages can be delivered independently, which can alleviate
the so-called ‘‘head-of-line-blocking-delay’’ caused by the
strict sequence delivery of TCP. Nowadays, applications
requiring this type of functionality typically utilize mul-
tiple TCP connections; this is similar to the SCTP fea-
ture from an application programmer’s point of view,
but different for the network as there is only one
congestion control instance for multiple streams in the
SCTP case.

Multi-homing support – with SCTP, a connection is not
associated with a single IP address and a port number on
each side but with a set of IP addresses and port numbers

S. Hessler, M. Welzl / Computer Communications 30 (2007) 630–637 631



Download English Version:

https://daneshyari.com/en/article/449551

Download Persian Version:

https://daneshyari.com/article/449551

Daneshyari.com

https://daneshyari.com/en/article/449551
https://daneshyari.com/article/449551
https://daneshyari.com

