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H I G H L I G H T S

� We model population structure
using networks of constant degree k.

� Evolution follows a Moran process
and is mapped into the voter model.

� If k is small, substantially smaller
mutation rates are enough to over-
come drift.

� The critical k for overcoming drift
increases as a power law with po-
pulation size.

� The stationary distribution becomes
tri-modal at this mutation threshold.
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a b s t r a c t

In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary
distribution of alleles that displays a transition between two different behaviors. For small mutation rates
most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles
will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed
haploid populations the mutation threshold is μ = N1/2c , where N is the population size. In this paper we
study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele
distribution for populations placed on regular networks where connected nodes represent potential
mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number
of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing
the diversity of the population at considerably low mutation rates. Defining kc as the degree of the
network for which the mutation threshold drops to half of its value in well-mixed populations we show
that kc grows slowly as a function of the population size, following a power law. Our calculations and
simulations are based on the Moran model and on a mapping between the Moran model with mutations
and the voter model with opinion makers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the ongoing debate over the relative importance of
randomness and environmental selection in determining the
properties of organisms during evolution, stochastic processes are
certainly an inherent property of living populations. In particular,
random variation in the outcome of different life-history events
collectively result in what is often summarized in the concept of

“random genetic drift” (Lenormand et al., 2009). Although its in-
fluence in large populations may be weak when compared to se-
lection, its role can be decisive in the process of fixation of rare
alleles and cannot be neglected in small populations.

In population genetics, mutation and genetic drift are two in-
escapable sources of stochasticity with opposing effects regarding
the maintenance of variation in the population. In the case of a
single biallelic locus under reversible mutation, the dynamics of
allele frequencies can be calculated in the limit of large and well-
mixed (panmictic) populations. The equilibrium distribution con-
verges to a Beta distribution that resembles a Gaussian for high

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

http://dx.doi.org/10.1016/j.jtbi.2016.04.024
0022-5193/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.

Journal of Theoretical Biology 402 (2016) 9–17

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2016.04.024
http://dx.doi.org/10.1016/j.jtbi.2016.04.024
http://dx.doi.org/10.1016/j.jtbi.2016.04.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.04.024&domain=pdf
http://dx.doi.org/10.1016/j.jtbi.2016.04.024


mutation rates and a U-shaped curve for small mutation rates
(Crow and Kimura, 1970; Gillespie, 2004). These two regimes re-
flect the relative importance of each evolutionary force in the
dynamics. For a haploid population of size N and mutation rate μ,
drift dominates whenever μ ⪡N2 1. In this regime, one of the alleles
becomes nearly fixed. For μ ⪢N2 1, on the other hand, mutation
dominates over drift and both alleles evolve to nearly equal fre-
quencies, maximizing genetic diversity. The transition occurs at a
well defined threshold, μ = N1/2c , where the equilibrium dis-
tribution of allelic frequencies becomes uniform. The dynamics
can also be computed with the help of hypergeometric functions.
The exact dynamics for populations of arbitrary size was only re-
cently computed (Chinellato et al., 2015). When several loci and
multiple alleles are taken into account the equilibrium condition
gives the expected genetic diversity under neutrality, which may
be taken as a null model for testing the effects of other evolu-
tionary forces (Crow and Kimura, 1970).

The consequences of random genetic drift were first worked
out by Wright and Fisher using a formulation currently known as
the Wright–Fisher process (Gillespie, 2004). From these early re-
sults, it became apparent how drift could generate genetic differ-
entiation between subdivided populations. Subsequently, the
study of genetic drift and population structure became entwined.
Contrary to early results that suggested that population structure
could have little effect on evolutionary dynamics (reviewed in
Ewens, 2004), it has been shown that the dynamics of allele fre-
quencies is sensitive to the spatial distribution of individuals in a
population. Specifically, the roles of mutation, selection and drift
can be affected by the geographical structure, and quantities like
fixation probability, time to fixation and allele distribution can
differ significantly from those derived for panmictic populations
(see for example Whitlock, 2003; Lieberman et al., 2005; Patwa
and Wahl, 2008; Constable and McKane, 2014; Allen, 2015).

Following Wright's (1931) classic island model, spatial struc-
ture has often been implemented by assuming that the population
is divided into islands of arbitrary sizes, or demes, which are
connected by migration. The connections can be seen as network
links, which can connect all demes between each other to form a
complete graph, or acquire more complex structures (see Con-
stable and McKane, 2014 for a recent overview on island models).
More recently, evolutionary graph theory has been introduced as a
framework that could provide a more general account of any ar-
bitrary population structure (Lieberman et al., 2005). In this case,
the individuals themselves are placed in the nodes of a network
and links represent interactions between pairs of individuals
(Lieberman et al., 2005; Dick and Whigham, 2005; Gordo and
Campos, 2006; Whigham and Dick, 2007; Tarnita et al., 2009;
Voorhees, 2013; Monk et al., 2014; Allen, 2015). The main focus of
these studies has been how population structure may affect the
drift-selection balance (Lieberman et al., 2005; Gordo and Campos,
2006; Whigham and Dick, 2007; Tarnita et al., 2009; Voorhees,
2013; Monk et al., 2014) and/or the fate of a single mutation
(Lieberman et al., 2005; Dick and Whigham, 2005; Whigham and
Dick, 2007; Voorhees, 2013; Monk et al., 2014; Allen, 2015). Not
much attention has been given to the balance between drift and
mutation and the properties of the stationary allele distribution
that arises in such process.

The aim of this paper is to quantify the effects of spatial
structure on the genetic variability and allele distribution under
the mutation-drift balance. We study a single biallelic gene in a
population of haploid individuals within the framework of a
Moran process on a network, for which exact results are known for
panmictic populations. In this model, an individual chosen at
random is substituted by a copy of another randomly chosen in-
dividual. Although the model has been proposed and studied in
the context of population genetics (Watterson, 1961; Cannings,

1974; Gladstien, 1978; Ewens, 2004), the process has found ap-
plications in other areas, such as the spreading of cancer (Durrett
and Moseley, 2015) and the evolution of altruism (Débarre et al.,
2014). We also use results from the voter model, a closely related
process developed in connection with the social sciences (Mobilia
et al., 2007; Harmon et al., 2015; Liggett, 2012; Yildiz et al., 2013;
Chinellato et al., 2015) with applications in physics (Mobilia, 2003;
Mobilia et al., 2007). In this case, individuals have to choose be-
tween two candidates in an election and their opinions are influ-
enced by other voters and external opinion makers. It has been
recognized that the Moran model bears a close resemblance to the
voter model. The connection was proven for well-mixed popula-
tions with mutations (de Aguiar and Bar-Yam, 2011) and for reg-
ular networks without mutations (Durrett and Moseley, 2015). In
particular, the phase transition from disordered to ordered states
exhibited by the voter model when the number of opinion makers
for each candidate is exactly one is mapped into the critical mu-
tation rate μ = N1/2c of the Moran model.

Our main interest is to understand how the threshold changes
for spatially structured populations. To that purpose, we place the
N individuals on a regular network, where each successive node is
connected to its k nearest neighbors, so that all nodes have the
same degree k. We study the configurations ranging from

= −k N 1 to k¼2, which correspond to the extremes of panmictic
to ring populations (in which individuals are in contact only with
their two nearest neighbors). In the first place, we provide a
connection between the Moran and voter models for networks of
arbitrary topologies. We show that a direct equivalence exists for
regular networks, where every node has the same degree k. Using
approximate solutions that are available for the voter model we
show that the equilibrium distributions of the Moran model
should not be sensitive to k, i.e. that the genetic distribution should
be independent of the population's spatial structure. However,
analytical results for a small network and numerical simulations
show that these approximations break down if k is small. For
sufficiently low values of k the critical mutation, above which
mutation dominates over drift, decreases substantially. As a con-
sequence, populations that display marked spatial structure can
have much higher diversity than expected for well-mixed ones.
We define a critical value kc as the degree for which the mutation
threshold drops to half of its panmictic value and show that kc
grows slowly as a function of N following a power law.

2. The voter model with opinion makers on networks

The voter model consists of a set of individuals who must
choose between two candidates (Liggett, 2012). Their opinion can
be influenced by their friends and by opinion makers, such as
journalists or politicians, whose power of persuasion toward one
of the candidates extends over the entire population. The opinion
makers are modeled by additional (external) nodes whose states
are fixed and that reach all voters equally, acting as a perturbation
to the intrinsic dynamics.

The population has N voters placed on the nodes of a network
and connected according to a specified adjacency matrix A, de-
fined by =A 1ij if the nodes i and j are connected and =A 0ij

otherwise. Each node has an internal state which can take the
values 0 or 1, indicating the intention of vote toward candidate
0 or candidate 1, respectively. The nodes are also connected to N0

nodes whose states are fixed at 0 and to N1 nodes whose states are
fixed at 1, representing the opinion makers. In what follows we
will refer as free nodes to those representing the set of voters and
as frozen nodes to those referring to opinion makers. The free
nodes can change their internal state by adopting the opinion of a
connected friend or that of an opinion maker as specified below.
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