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H I G H L I G H T S

� A statistical methodology applied to the characterization of flowering curves using Gaussian mixture models is proposed.
� We suggest our own selection criterion to take into account the lack of symmetry of most of the flowering curves.
� A principal component analysis is conducted on a set of indicators derived from the statistical approach.
� Results suggest the lack of correlation between reblooming and flowering precocity.
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a b s t r a c t

In this paper, we develop a statistical methodology applied to the characterization of flowering curves
using Gaussian mixture models. Our study relies on a set of rosebushes flowering data, and Gaussian
mixture models are mainly used to quantify the reblooming properties of each one. In this regard, we
also suggest our own selection criterion to take into account the lack of symmetry of most of the
flowering curves. Three classes are created on the basis of a principal component analysis conducted on a
set of reblooming indicators, and a subclassification is made using a longitudinal k-means algorithm
which also highlights the role played by the precocity of the flowering. In this way, we obtain an
overview of the correlations between the features we decided to retain on each curve. In particular,
results suggest the lack of correlation between reblooming and flowering precocity. The pertinent in-
dicators obtained in this study will be a first step towards the comprehension of the environmental and
genetic control of these biological processes.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and motivations

As it is explained by Putterill et al. (2004), matching the flow-
ering period with the best climatic conditions is a crucial step for
wild plants to obtain a high fertility rate. In agriculture, the
amount of seeds and fruits produced by plants is directly related to
their ability to produce a great number of flowers, hence flowering
is extremely important for high-yields crops. For ornamental
plants, obtaining a large number of flowers over the longest period
of the year is an important breeding objective.

Plants present a large diversity of flowering patterns between
taxa and suitable parameters are necessary to summarize these
flowering profiles. Flowering curves, counting the number of
flowers observed for a plant at regular time intervals, can be ob-
tained from field scorings. Statistical methods have been rarely
used to efficiently describe and compare flowering curves. As an
example, regression curves have been used to fit flowering curves,
but only for once-flowering plants whose curve shape skewed from
normality (see Clark and Thompson, 2011). Especially in horti-
culture, annual flowering curves are sometimes much more
complex. Reblooming – or recurrent flowering – plants are able to
flower and fructify several times over the year. Such plants are
found among several ornamental species, like irises, hydrangeas,
daylilies or roses, but also in fruit-producing species like straw-
berry or raspberry plants.

For roses (Rosa sp. or genus Rosa), flowering traits are
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particularly important, either for cut or garden roses. In Occident,
the nineteenth century represents a golden age for rosebush
breeding. It involved the creation of many cultivars, with the in-
troduction of new traits in created hybrids, as explained by
Oghina-Pavie (2015). Very early in this century, breeding activities
have aimed at obtaining earlier – or later – flowering cultivars to
increase the range of flowering periods (Oghina-Pavie, pers.
comm.). Later in this century, the reblooming trait became the
most important trait in rosebush breeding. Current modern roses
result from crosses between reblooming Chinese roses and once-
flowering European roses, obtained during the nineteenth century,
according to Wylie (1954). By the number of created cultivars and
by the diversification of flowering profiles, rosebush genetic re-
sources of the nineteenth century are probably among the most
interesting models for developing methodologies to characterize
flowering curves.

The biological sample analysed in this article is composed of
329 exploitable flowering curves obtained in 2012 in the rose
garden “Loubert” (Les Rosiers-sur-Loire, France). The studied gen-
otypes were predominantly bred during the nineteenth century.
For each genotype, the number of open flowers was counted al-
most each week between May 10 and November 15. For the most
widespread case, were considered as open flowers developmental
stages at or between these two following stages: (1) flower bud
with at least one sepal detached from petals and at least one petal
detached from the others (except for simple flowers, having five
petals) and (2) flower with at least one petal which remains with
original aspect and colour (see Fig. 1.1). The plant shape (sphere,
cylinder or cone), circumference and height were measured for
calculation of flower density (number of flowers per m2). The
mean number of flowers within an inflorescence was also counted.
The dataset originally contained some irregularities and missing
values, and different temporal lags between consecutive measures.
All these issues have been carefully dealt with by the authors, but
occasional presence of residual artificial values cannot be
excluded.

In rosebush, the contemporary works of Iwata et al. (2012) and
Kawamura et al. (2015) have highlighted the fact that flowering
process is tightly linked to the branching process of the plant. In
once-flowering cultivars, inflorescences are produced in the spring
by the development of shoots from axillary buds of shoots from
the previous year. Later in the year, new indeterminate shoots are
produced and remain vegetative (having no flower). Inflorescence
will develop the year after from axillary buds, issued of these ve-
getative shoots. In reblooming cultivars, either axillary buds will
give inflorescence, or new determinate shoots terminated by an
inflorescence will emerge successively from older shoots. There-
fore, the best way to characterize rose flowering profile would be
to differentiate the number of flowers produced by each shoot
developed along the year. As an illustration of decomposition of
the flowering shoot by shoot, Durand et al. (2013) tried to model
biennial bearing in apple trees. For a large sample of elderly ro-
sebushes with many shoots like the one studied in this article, this
represents a huge and laborious work. Statistical methods are
therefore needed to characterize flowering profiles (flowering
date, flowering intensity, reblooming magnitude) from flowering
curves obtained by counting flowers along the year in the whole
plant. As for the characterization of reblooming, it is especially
challenging to distinguish a long unique flowering period from
several partially overlapping ones, corresponding to successive
floral initiations.

Mixture models have for a long time been popular in life sci-
ences, especially in biology and genetics, in fact since the seminal
works of Pearson in the late nineteenth century. We guide the
reader to the far from exhaustive mixtures applications to biology
by Haley and Knott in 1992, Lynch and Walsh in 1998, Detilleux

and Leroy in 2000, Boettcher et al. in 2005, Choi et al. in 2010,
Shekofteh et al. in 2015, and references therein. The ability of a
Gaussian mixture to split an apparently chaotic whole phenom-
enon into simple components and to highlight hidden structures
was our main motivation to apply such models to flowering
curves. Indeed, a rosebush is made of stems among which one may
start to bloomwhile another starts to loose its flowers. On a whole
set of branches, the resulting phenomenon is not suitably ex-
plained from a deterministic approach consisting in counting all
variations from one week to the other. On the contrary, the waves
mechanism of Gaussian mixture models seems to form a relevant
alternative, as we will see in Appendix A. The paper is organized as
follows. Sections 2 and 3 are devoted to the statistical tools that we
intend to customize and to their applications on our dataset, re-
spectively for the characterization and the classification of the
flowering curves. In particular, a theoretical background is sup-
plied, when necessary. Some concluding remarks are given in
Section 4 and a schematic example is provided in Appendix A, to
justify our choice of Gaussian mixture models.

2. An application of GMM to flowering curves

This section is devoted to the application of the Gaussian Mix-
ture Model – shortened from now on GMM – on a set of flowering
curves according to a statistical methodology that we will see in
detail. Firstly, we need to supply a short theoretical background
about GMM (see McLachlan and Basford, 1988; McLachlan and
Peel, 2000 for more details).

2.1. The Gaussian mixture model

Consider a set ( … )X X, , n1 of n real-valued random variables that
we want to divide in k classes. For all ≤ ≤i n1 , we denote by Zi the
latent random variable in { … }k1, , corresponding to the class of Xi.
We suppose that ( … )Z Z, , n1 are independent and have the same
distribution as a random variable Z such that, for all ≤ ≤j k1 ,

 π( = ) =Z j .j

In addition, we suppose that for all ≤ ≤i n1 , the random variable
|{ = }X Z ji i has a μ σ( ),j j

2 distribution and accordingly, πj stands for
the proportion of the class j in the whole population. For all ∈x ,
the distribution of the mixture is
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The classic approach (see e.g. Day, 1969; Xu and Jordan, 1996) to
estimate the −k3 1 parameters, considering the relation
π π+ ⋯ + = 1k1 , is to run the so-called Expectation-Maximization
algorithm (Dempster et al., 1977) to maximize the above log-like-
lihood. The resulting estimator β∼k is finally used to classify the
observations via the Bayes' theorem. Namely,
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