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H I G H L I G H T S

� A conservation law theory of the shape of size distributions in populations is extended.
� Size-specific mortality rate equations of populations for realistic cases are derived.
� Two applications of contrasting characteristics are presented as case studies.
� The extended theory is useful in the stock assessment of small-scale and invertebrate fisheries.
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a b s t r a c t

Knowledge of mortality rates is crucial to the understanding of population dynamics in populations of
free-living fish and invertebrates in marine and freshwater environments, and consequently to sus-
tainable resource management. There is a well developed theory of population dynamics based on age
distributions that allow direct estimation of mortality rates. However, for most cases the aging of in-
dividuals is difficult or age distributions are not available for other reasons. The body size distribution is a
widely available alternative although the theory underlying the formation of its shape is more compli-
cated than in the case of age distributions. A solid theory of the time evolution of a population structured
by any physiological variable has been developed in 1960s and 1970s by adapting the Hamilton–Jacobi
formulation of classical mechanics, and equations to estimate the body size-distributed mortality profile
have been derived for simple cases. Here I extend those results with regards to the size-distributed
mortality profile to complex cases of non-stationary populations, individuals growing according to a
generalised growth model and seasonally patterned recruitment pulses. I apply resulting methods to two
cases in the marine environment, a benthic crustacean population that was growing during the period of
observation and whose individuals grow with negative acceleration, and a sea urchin coastal population
that is undergoing a stable cycle of two equilibrium points in population size whose individuals grow
with varying acceleration that switches sign along the size range. The extension is very general and
substantially widens the applicability of the theory.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The shape of the cross-sectional size distribution of large po-
pulations contains information about several interesting processes
affecting it since the time the oldest individual was born, such as
mortality, growth, and possibly reproduction when the time di-
mension is considered (Kristensen et al., 2014). Sinko and Streifer
(1967) developed a general theory for the flow of organisms
through size and age using a formulation similar to the Hamilton–
Jacobi equation of motion in classical mechanics. Their theory
contained as special cases previous models of age-structured po-
pulations and allowed to formulate new models for the dynamics

of age-, size-, and general physiological age-structured popula-
tions, as well as to introduce vaying environments and interacting
species (Streifer, 1974; Van Sickle, 1977a; DeAngelis and Huston,
1987). Here I present the theory to solve for one of the processes
affecting size distributions, namely mortality rates, under realistic
situations typically occurring with marine populations of fish and
invertebrates, extending previous work by Van Sickle (1977b).

Knowledge of mortality rates is crucial to understanding po-
pulation dynamics and to management of free-living natural re-
sources. When cross-sectional -and optionally- time series data of
the distributions of ages in the population are available, the shape
of these cross-sections directly reflect mortality and recruitment
patterns. Solid theories for age-dependent mortality (Suematsu
and Kohno, 1999) as well as age-dependent recruitment (Quinn
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and Deriso, 1999) can then be used to understand population
dynamics. These theories however are not useful for the analysis
of populations composed of individuals that cannot routinely be
aged by analysts in the laboratory or that are not economically
important enough to establish protocols and laboratories in the
first place. This is the case of the vast majority of small scale
fisheries for invertebrates and finfish. For those populations more
useful theories can be built from size rather than age distributions.
Moreover, some demographic processes are more directly con-
nected to the size rather than the age of the individuals.

With these motivations and based on Sinko and Streifer (1967)
theory, Van Sickle (1977b) derived several equations to estimate
mortality rate from size distributions. However, Van Sickle (1977b)
derivations are of limited scope because they are valid for
(i) stationary, steady-state populations that do not change in total
abundance, (ii) whose new individuals enter at a constant rate,
and (iii) that grow according to a constant acceleration of growth
model. Conditions of stationarity or steady-state are seldom
achieved in marine populations of fish and invertebrates due to
the combination of life history strategies and environmental
variability. On the contrary, in the marine environment both fish
and invertebrate populations are characterised by strong fluctua-
tions because of intense recruitment variability (Pritt et al., 2014).
Moreover, it is common for fish and invertebrate populations to
exhibit non-constant entry of individuals because of marked sea-
sonality in recruitment, as a consequence of both, seasonality in
spawning and environmental forces acting during the larval phase
(Munro et al., 1990; Hufnagl et al., 2013). Finally, large groups of
marine organisms do not grow according to the constant accel-
eration model considered by Van Sickle (1977b), instead growing
at varying growth rates over their lifetime, particularly in-
vertebrates which precisely are the groups that most often are not
regularly aged in the laboratory (Arkhipkin and Roa-Ureta, 2005;
Roa-Ureta, 2010).

These characteristics of free-living marine populations could be
the reasonwhy Van Sickle (1977b) formulas have not been used by
applied marine biologists in spite of the conceptual appeal of their
underlying theory and that they allow to evaluate mortality rates
that are size-specific. In a recent methodological paper (Hufnagl
et al., 2013) analysing the shortcomings of eight widely used
methods to estimate mortality and growth rates from size dis-
tributions of aquatic populations, Van Sickle (1977b) formulas
were ignored, even though the methods that were included in
Hufnagl et al. (2013) are not as solidly grounded in biological
theory as Van Sickle (1977b) formulas and that they produce ag-
gregate mortality rate estimates instead of size-dependent pro-
files. This latter aspect is most remarkable when considering that
it is widely acknowledged that mortality rates vary over the life-
time of marine organisms (Quinn and Deriso, 1999) and that there
is in fact substantial variation in mortality rates along the life
history of taxa across both the plant and animal kingdoms (see
Fig. 1 in Jones et al., 2014).

Therefore, in this paper I extend Van Sickle (1977b) treatment
of the problem by deriving new solutions for mortality rate that
are valid for non-stationary populations composed of individuals
that exhibit variable growth rates along their lifetimes and that
enter the population at seasonally varying rates, while preserving
the size-specific formulation. As illustration of the potential of the
extended theory I apply it to two contrasting cases of benthic
marine invertebrate populations.

2. Theory

In this section I show an equation of balance for all the pro-
cesses shaping the size distribution of populations, explain the

conceptual grounds of each of the processes, illustrate the result
with specific cases that have been presented by previous authors,
and finally lay out specific models for each of the processes. This is
aimed at deriving equations that can be used to estimate the size-
dependent mortality rate profiles. Essentially I extend Van Sickle
(1977b) approach to non-stationary populations, general in-
dividual growth models, and pulse, seasonal recruitment. Let t be
time and y be individual size, and define the number density
function as the number of individuals at a specific point in time in
a given size interval, that is
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In this definition two more variables that are relevant in popula-
tion dynamics, age and space, are ignored in order to find theo-
retically sound expressions that are useful for a spatially ag-
gregated view of a population whose individuals cannot be aged
routinely in the laboratory, so they are observed from the size
distribution only. A simplified version of the proof in the appendix
of Sinko and Streifer (1967) shows that the processes shaping the
size distribution obey a balance equation
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where g¼dy/dt is the rate of growth in size of individuals and D is
the mortality rate (the proof is provided in Appendix 1 of the
Supplementary Material). With the focus on solving for D(y) at a
moment in time, apply first the product rule, then divide all re-
sulting term by the density function, and finally solve for D(y),
which yields
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In the reasoning above it has been assumed that both the in-
dividual growth rate and the mortality rate are time-invariant. The
resulting equation tells that the size-specific mortality rate profile
is a balance between total population growth spread over the size
distribution (first summand), the acceleration of individual growth
(Schnute, 1981, second summand), and the g-corrected size-de-
pendent change in population density (third summand). Since Eq.
(2) is a conservation law (Van Sickle, 1977b), in any specific ap-
plication the processes acting in opposite directions in the flux of
individuals through small size intervals must have opposite signs.
Specifically, when the mortality rate is on the left-hand side as in
Eq. (3), those processes on the right-hand side that add individuals
into size intervals or that delay the exiting from size intervals must
have positive signs while those facilitating the exit of individuals
from size intervals must have negative signs (see Fig. A1.1, Ap-
pendix 1 in the Supplementary Material). The resulting mortality
rate profile must be positive throughout the size range.

The first two summands and the coefficient of the third sum-
mand are clearly recognised as the contributions of population
growth and individual growth to the shaping of the size dis-
tribution. The nature of the third summand is less clear. Van Sickle
(1977b) simply called it the slope of the η( ( ))yln over the size
range, which lacks conceptual substance. In discussing his for-
mulas he recognised that it is related to recruitment and that in his
proposed form only applies to the older segments of a population,
leading to discarding the part of the size distribution corre-
sponding to smaller individuals that are increasing in density (see
Fig. 1 in Van Sickle (1977b)). Here I complete Van Sickle (1977b)
formulation by giving this derivative its proper theoretical
grounding. The third derivative in the general theory of Eq. (3)
corresponds to the effect of the recruitment pattern, meaning
whether the new individuals enter the population in a smooth,
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