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H I G H L I G H T S

� Model selection for identifying growth patterns in the presence of model error.
� Methodology for modeling the structural uncertainties in mathematical models.
� Bayesian model comparison is a mathematically formalized Occam's razor.
� Numerical results using three fungal growth models in the context of simulated data.
� Model complexity plays an important role in identifying growth patterns in fungi.
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a b s t r a c t

This paper describes a rigorous methodology for quantification of model errors in fungal growth models.
This is essential to choose the model that best describes the data and guide modeling efforts. Mathe-
matical modeling of growth of filamentous fungi is necessary in fungal biology for gaining systems level
understanding on hyphal and colony behaviors in different environments. A critical challenge in the
development of these mathematical models arises from the indeterminate nature of their colony
architecture, which is a result of processing diverse intracellular signals induced in response to a het-
erogeneous set of physical and nutritional factors. There exists a practical gap in connecting fungal
growth models with measurement data. Here, we address this gap by introducing the first unified
computational framework based on Bayesian inference that can quantify individual model errors and
rank the statistical models based on their descriptive power against data. We show that this Bayesian
model comparison is just a natural formalization of Occam's razor. The application of this framework is
discussed in comparing three models in the context of synthetic data generated from a known true
fungal growth model. This framework of model comparison achieves a trade-off between data fitness
and model complexity and the quantified model error not only helps in calibrating and comparing the
models, but also in making better predictions and guiding model refinements.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mycelial expansion of filamentous fungi has an enormous
impact on agriculture, animal and human health and environ-
mental sustainability (Redecker et al., 2000; Hawksworth, 2001;
Gow and Gadd, 1995; Blain, 1975). The expansion of mycelium in
different environments is orchestrated by several physical and
biochemical mechanisms (Leeder et al., 2011). A number of models

have been developed in the past decades to describe mycelial
growth. Generally, these models can be categorized into two
groups: continuous and discrete. A continuous model, appearing
in the form of differential equations, usually describes mycelial
network by its average properties, such as biomass density and
hyphal density. The model proposed by Edelstein (1982) for
example, falls into this category and is the basis of many models.
The model consists of various branching and anastomosis and
could be calibrated for different species. However, the model is
based on the assumption that unlimited nutrient is supplied and
does not include the interaction between fungi and its environ-
ment. Later work (Edelstein and Segel., 1983; Davidson and Park,
1998) improved this model by introducing processes such as
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uptake and translocation. Boswell et al. (2003) further incorpo-
rated the hyphal division into active and inactive according to
whether they are involved in the translocation of internal meta-
bolites. This model was shown to be applicable to the nutritionally
heterogeneous environments. Unlike the continuous models that
are based on averaging the fungal properties, discrete models
consider the growth of each hypha and can produce a realistic
visualization of fungal mycelium (Boswell and Davidson, 2012).
However, the construction of such a complex mycelial network is
computationally expensive and it is much more difficult to include
various physical and biochemical processes into a discrete model
than into a continuous model (Boswell and Davidson, 2007).

Mathematical structures that describe the complexity of these
fungal growth patterns vary greatly. Thus, it is important to have
access to a computational tool capable to rank alternative models
in the light of data. This raises the issue of model selection, which
is significant in several aspects. First, mycologists can identify the
growth model that best describes the experimental data. This can
determine the dominant growth patterns for various fungi species
grown in diverse environments; these include the study of fungal
growth patterns in presence of antifungal drugs. Second, devel-
oping a new model is a nontrivial task. It consists of identifying
dominant growth patterns, describing them mathematically, and
validating whether the new model has improved descriptive
power over its predecessors. Choosing from existing models on the
other hand, can save time and energy in quickly identifying
dominant growth patterns and guide the development of the new
model. In addition, for a series of models derived from the same
predecessor, the complex ones may not always be the better
choice than the simpler ones. According to Occam's razor, a
complex model should only be chosen if it offers a significant
improvement (MacKay, 2003). This principle should direct the
development of a new model, when additional processes are
incorporated. Thus rigorous model selection can be an important
tool in studying fungal growth.

The most straightforward way to evaluate the performance of a
model is to determine how well it fits the observational data using
classical measures such as mean square error. However, in the
context of comparing different models, these type of measures are
generally inappropriate. They favor heavily parameterized models
able to “fit anything”, leading to over-fitting rather than an
improved description of the true biology. This is in contrast with
the aim of mathematical modeling, which is to simplify the com-
plex process in the real world so as to study the key properties of
the phenomenon of interest (Boswell and Davidson, 2007). Com-
plicated models capable to mirror the reality are meaningless to
researchers as they describe spurious physical processes. Thus,
when comparing different models there is more to consider.
Namely, a good model selection approach should be a trade-off
between data fitness and model complexity.

Two of the most commonly used approaches for model selec-
tion are Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC). Both are based on the likelihood function
which reflects how well the model fits the data and both have an
additional penalty term for the number of parameters in the
model. Penalty term in BIC is positively correlated with the
number of observations and generally larger than the penalty in
AIC (Kirk et al., 2013; Kadane and Lazar., 2004). However, the
number of parameters may not reflect the real complexity since
different models could have different mathematical structures.
Bayesian inference uses relative probabilities to compare the
models under consideration. This general measure, which natu-
rally embodies Occam's razor, favors models that fit the data well
while penalizing models that rely heavily on the data to adjust
parameters. Smith and Spiegelhalter (1980) pointed that under
specific conditions, AIC and BIC are two particular cases of

Bayesian model selection. In this work, we adopt a full Bayesian
approach to the model selection problem.

Bayesian model selection in biological applications has been
recently reported in Refs. Kirk et al. (2013) and Vanlier et al.
(2014). However, an important issue which is less addressed is the
existence of model uncertainty. It should be noted that the model
selected among a set of candidates may not be the best in
describing the real process. It is just better than the other candi-
dates and it is quite possible that there is still a big discrepancy
between its output and the real process. Unfortunately, this model
discrepancy seems to be neglected in biological models, which
causes the difficulty of describing real world data and restricts the
use of advanced model-based approaches. In fact, no model could
fully describe the real process. The discrepancy which is due to
missing physics and numerical approximations is inevitable for
mathematical models. Brynjarsdòttir and O'Hagan (2014) illustrate
the importance of recognizing model discrepancy by giving a
simple example where the model used for simulation is slightly
different from the true model that generated observational data. It
is shown that the prediction as well as the estimation of the
parameters can be biased and over-confident.

The inclusion of model discrepancy in the mathematical model
is important not only for improving model predictions but also for
understanding the deficiencies of the model, which can lead to
further improvements. Thus, it is necessary to include model dis-
crepancy in model-based studies. In this paper, the discrepancy is
modeled using a parametric structure and calibrated with obser-
vational data as proposed by Kennedy and O'Hagan (2001). We will
show that the introduced model discrepancy offers a way to eval-
uate the predictive capability of the best model in the context of
model selection. If the model discrepancy is very large, the model
cannot be used even though it outperforms other candidates.

A variety of computational approaches have been developed to
solve Bayesian inverse problems. Among them, Markov Chain
Monte Carlo (MCMC) algorithms have became the main compu-
tational workhorse in scientific computing for solving statistical
inverse problems. However, most MCMC approaches will fail,
when model error is introduced. Model error causes the likelihood
function and the prior probability density function to overlap in
the regions of small value, which in turn decreases the acceptance
rate of MCMC algorithms. This yields highly correlated samples far
away from the region of high density. Furthermore, due to a big
difference in the support of the prior probability density function
and the likelihood function the evidence estimator used in Baye-
sian model selection has a large variance. Thus the computational
approaches for solving Bayesian inverse problems need to be
selected carefully in the presence of model error.

In this paper, an adaptive multilevel-sampling algorithm (Pru-
dencio and Schulz, 2012) is used to obtain samples from the
posterior distribution. Instead of sampling directly from the pos-
terior, the algorithm samples a set of intermediate distributions
corresponding to likelihood functions that are progressively flatten
to increase the overlap with the prior. Besides sampling challen-
ging posterior distributions, the multilevel sampling algorithm can
be used to build an evidence estimator that has a significantly
lower variance by aggregating the partial evidence calculated at
each intermediate step.

All these developments are assembled into a comprehensive
framework to perform Bayesian model selection as well as quan-
tify the model discrepancy to study fungal growth. The models
proposed by Edelstein (1982) are used to illustrate our approach,
where different growth patterns are generated and compared, and
the discrepancy of each model is quantified. These models have
been selected thanks to their simple structure to provide the
reader with an overview on how to apply this framework and
interpret the results of the proposed analysis, which is the goal of

X. Lin et al. / Journal of Theoretical Biology 398 (2016) 85–9586



Download English Version:

https://daneshyari.com/en/article/4495819

Download Persian Version:

https://daneshyari.com/article/4495819

Daneshyari.com

https://daneshyari.com/en/article/4495819
https://daneshyari.com/article/4495819
https://daneshyari.com

