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H I G H L I G H T S

� Path interval distance analyzed as a method for comparing phylogenetic trees.
� Path interval distance captures global similarities between tree topologies.
� Random trees are not likely to be maximally distant under the path interval distance.
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a b s t r a c t

The path interval distance accounts for global congruence between locally incongruent trees. We show
that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In
contrast to the Robinson–Foulds distance, random pairs of trees are unlikely to be maximally distant
from one another under the path interval distance. These features indicate that the path interval distance
should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming
increasingly important.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Biologists display evolutionary relationships between opera-
tional taxonomical units, or taxa, as leaves of a tree. In many
instances a collection of trees may be constructed from a single set
of taxa. In other cases, while the taxa on two trees may be biolo-
gically distinct, one may wish to identify taxa on each tree to make
a comparison. In this note we assume trees are constructed from a
single set of taxa.

Tree metrics have been developed to compare the difference
between trees generated using the same set of taxa and to assist
when combining a set of trees to form a single tree which reflects
the shared aspects of the elements of the set.

When testing reconstruction algorithms one compares a
model tree to sample trees reconstructed from simulated data
using the algorithm (Guindon et al., 2010; Lin et al., 2011; Sal-
zburger et al., 2011). Alternatively, a step in many reconstruction
algorithms involves finding a consensus tree among conflicting
trees on the same set of taxa (Bansal et al., 2011; Bryant, 2003;

Libeskind-Hadas et al., 2014). In the study of cophylogenetics one
may identify the taxa on a host tree with taxa on a parasite tree if
the parasite is known to live on a unique host. In this case the leaf
labels refer to an identified pair of taxa (one host and one para-
site) (Conow et al., 2010; Huggins et al., 2012; Ovadia et al., 2011).
Trees with the same leaf set are also prevalent in phylogenomics
when building a species tree from a set of gene trees (Heled and
Drummond, 2010; Hughes et al., 2007; Liu and Yu, 2011; Mirarab
et al., 2014).

Various factors may cause differences among trees on the same
leaf set such as; gene species tree discordance under the coales-
cent model (Degnan and Rosenberg, 2009), a parasite's failure to
speciate in reaction to a host speciation (Page, 2003), imperfect
reconstruction algorithms, or incongruities among phylogenetic
trees. However, given the shared evolutionary history, one expects
to find a topological relationship between the trees.

Many tree metrics have been developed to analyze the differ-
ences between trees. Perhaps most famous among these methods
are the Robinson–Foulds distance and the Nearest Neighbor Inter-
change (NNI) distance. Recently a new metric, k-interval cospecia-
tion, was proposed in the context of cophylogeny (Huggins et al.,
2012). As k-interval cospeciation has broad applicability in com-
paring trees with identified taxa sets, we refer to this metric instead
as the path interval distance as this better reflects the generality of
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the metric and its relationship to the path-difference metric (Steel
and Penny, 1993) and the edge-difference distance (Williams and
Clifford, 1971).

The path interval distance illuminates global similarities
between trees that classical tree metrics do not uncover. We do not
propose that the path interval distance supplants the Robinson–
Foulds or NNI distances as their importance and statistical proper-
ties have been well documented (Bryant and Steel, 2009; Pattengale
et al., 2007). However, alternative tree metrics may yield additional
insight into the relationship between incongruous trees.

We compare the path interval distance to traditional tree
metrics and explore its combinatorial and statistical properties. In
particular we show that unlike the Robinson–Foulds metric, the
probability that two randomly selected trees are maximally distant
under the path interval distance goes to zero as the number of taxa
increases. Thus the path interval distance may be useful as a tool
for analyzing reconstruction algorithms on simulated data or
developing consensus methods in phylogenomics.

2. Relationship between the path interval distance and other
discrete tree metrics

We restrict our attention to unrooted binary trees where each
non-leaf vertex has degree three. At each leaf of the tree is a taxon
(plural: taxa), such as a gene or species. The number of unrooted
binary trees on n taxa is denoted ub(n) and given by,

ubðnÞ ¼ ð2n�5Þ!!¼ ð2n�5Þ � ð2n�3Þ �⋯� 5� 3� 1:

We define a cherry to be a pair of taxa with exactly two edges
between them, and a caterpillar tree to be a phylogenetic tree with
exactly two cherries. The shortest path between two taxa on a tree
T is the smallest connected subgraph of T that contains both taxa.
The length of the shortest path is the number of edges in the path.
Since path interval distance is a discrete tree metric, we do not
consider branch lengths.

Definition 1. Let T1 and T2 be phylogenetic trees on the taxon set
X with jX j ¼ n. Let piðA;BÞ be the length of the shortest path
between taxa A and B on Ti. The path interval distance between T1
and T2, denoted dðT1; T2Þ, is the maximum of jp1ðA;BÞ�p2ðA;BÞj
over all pairs of taxa fA;BgAX2.

It follows that the path interval distance is a tree metric
(Huggins et al., 2012) (where this is referred to as k-interval-
cospeciation). See Xi et al. (2015) for a concise explanation of the
relationship between the path interval distance and other tree
metrics. In this note we contrast the path interval distance with
several of the more popular discrete tree metrics.

Definition 2. A tree metric, da, determines db if there exists a
bijection, f : R-R such that f ðdaðT1; T2ÞÞ ¼ dbðT1; T2Þ for all n taxa
trees T1 and T2.

We show that several commonly used discrete tree metrics do
not determine the path interval distance. In fact, the path interval
distance reflects global similarities between trees where other tree
metrics do not.

One common tree metric is the nearest neighbor interchange
distance. A nearest neighbor interchange (NNI) is a tree rearrange-
ment operation in which we switch two subtrees of a tree that are
joined by a single edge (Moore et al., 1973; Robinson, 1971). The
nearest neighbor interchange distance between T1 and T2 is the
smallest number of NNIs that takes to transform T1 into T2. Finding
the NNI distance between two given trees is an NP-complete
problem (DasGupta et al., 1997), while the path interval distance
can be computed in Oðn2Þ (Xi et al., 2015).

Huggins et al. (2012) proved that two trees are path interval
distance one apart if and only if they are NNI distance one apart.
However, they also introduced a counterexample to the possibility
of the path interval distance providing an upper bound for the NNI
distance for any k41.

Theorem 1. The NNI distance does not determine the path interval
distance.

Proof. Let C3x and D3x be trees built by adding rooted triples on
the same leaf set, but with differing cherries to the pendant edges
of two 3x-taxa caterpillar trees C and D (see Fig. 1(a) and (b)).

Since no NNI operation is able to alter two of these rooted triples
at the same time, the NNI distance between C3x and D3x is x.
However, the two trees have a path interval distance of two.
Moreover by matching a rooted triple from C3x with D3x we main-
tain path interval distance of two, but decrease the NNI distance by
one. Therefore, the NNI distance does not determine the path
interval distance.□

Remark 1. Similarly, one can also show that path interval distance
does not determine the Robinson–Foulds distance (defined in
Robinson and Foulds, 1981), the path difference distance(defined
in Steel and Penny, 1993), or the maximum agreement subtree
distance (defined in Finden and Gordon, 1985).

The path interval distance between two trees describes global
similarities between the trees that other common discrete tree
metrics do not. One way of describing this global similarity is
through the length of the longest path between two taxa on the
trees. Notice that the path interval distance between two trees
provides an upper-bound on the difference between the length of
the longest path of the two trees. Thus, trees differing by a small
path interval distance must share a similar global topology.

While trees C3x and D3x show that the path interval distance
and many of the traditional tree metrics can differ greatly, the path
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Fig. 1. Counterexample trees introduced in Huggins et al. (2012).
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