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H I G H L I G H T S

� We investigate a predator–prey system on two coupled patches.
� We evaluate stability and bifurcations for many model classes.
� Losses due to emigration and adaptive dispersal can be stabilizing.
� Dispersal can induce pattern-forming bifurcations.
� Adaptive dispersal leads to antisynchronous oscillations.
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a b s t r a c t

Dispersal between different habitats influences the dynamics and stability of populations considerably.
Furthermore, these effects depend on the local interactions of a population with other species. Here, we
perform a general and comprehensive study of the simplest possible system that includes dispersal and
local interactions, namely a 2-patch 2-species system. We evaluate the impact of dispersal on stability
and on the occurrence of bifurcations, including pattern forming bifurcations that lead to spatial het-
erogeneity, in 19 different classes of models with the help of the generalized modelling approach. We
find that dispersal often destabilizes equilibria, but it can stabilize them if it increases population losses.
If dispersal is nonrandom, i.e. if emigration or immigration rates depend on population densities, the
correlation of stability with dispersal rates is positive in part of the models. We also find that many
systems show all four types of bifurcations and that antisynchronous oscillations occur mostly with
nonrandom dispersal.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In ecology both the exploration of dynamical models of food
webs (Pascual and Dunne, 2005; Thompson et al., 2012; Rooney
and McCann, 2012) and the study of spatial metapopulations
(Holland and Hastings, 2008; Hanski and Gaggiotti, 2004; Tromeur
et al., 2013) are well established lines of research. The two mod-
elling approaches emphasize different aspects of ecological
dynamics that are both relevant for most species: the dispersal
between different habitat patches and tropic interactions with
other species. Yet, models that combine dispersal with trophic
dynamics have only recently begun to appear. In the following we
refer to such models that include both these features as meta-
foodwebs.

An elegant meta-foodweb model that is based on rates for
colonization and extinction was proposed by (Pillai et al., 2011).
More detailed dynamical models were proposed in Abrams and
Ruokolainen (2011), Abdllaoui et al. (2007), and Jansen (2001), to
name a few. The different models draw motivation from different
biological systems and hence make different modelling choices
regarding the nature of dispersal and local dynamics. For example
Jansen (2001) assumes diffusive dispersal between patches which
is appropriate for simple life forms such as bacteria, whereas
Abrams and Ruokolainen (2011) make dispersal dependent on
growth rate differences between patches, implying that indivi-
duals can actively choose the site with the best growth conditions.
Though many of these studies only describe two patches, con-
clusions from multi-patch models are often consistent with those
from two-patch models (Jansen and de Roos, 2000), and therefore
the insights gained from 2-patch systems have wider applications.

The two mentioned examples for implementing dispersal are
only a small subset of the large space of possibilities. In the lit-
erature different assumptions are made regarding the functional
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forms of the number of emigrants from a given habitat patch, the
choice of destination, the proportion of survivors that arrive as
immigrants in the destination patch and the settlement success
(Amarasekare, 2008; Armsworth and Roughgarden, 2008; Rowell,
2010). In the simplest case a fixed proportion of the population
emigrates per unit time and instantaneously and losslessly settles
in a randomly chosen neighbouring patch (Leibold et al., 2004).
This type of migration is usually called “random dispersal” or
“diffusive migration”, and often leads to a synchronisation of the
population dynamics of the two patches (Goldwyn and Hastings,
2008; Jansen, 2001). Examples for non-random dispersal are
predator evasion and predator pursuit (Li et al., 2005), or a
migration rate that is proportional to the difference in growth
rates between two patches (Abrams and Ruokolainen, 2011).

The type of dispersal strongly affects the stability and the
dynamics of the system. In general, more rapid dispersal is more
likely to synchronize populations, although synchronisation does
not necessarily require strong dispersal (Liebhold et al., 2004).
With adaptive dispersal, antisynchronous oscillations of the two
patches are observed, which increase metapopulation persistence.
The less similar populations are the less likely is it that dispersal is
synchronizing (Esa Ranta and Lundberg, 1998). Other authors find
that increased dispersal can decrease synchrony in population
dynamics depending on the interactions between migrating spe-
cies (Koelle and Vandermeer, 2005). A general investigation of
metapopulations based on a linear stability analysis (Tromeur et
al., 2013) found that costly dispersal and social fencing are stabi-
lizing, while positive density dependence and settlement facilita-
tion reduce stability. Other papers have shown that costly dis-
persal might be destabilizing to a metapopulation with homo-
geneous patches (Kisdi, 2010) so the specific mechanisms appear
to be of importance. The effects of dispersal on stability can
depend not only on the type but also on the intensity of the dis-
persal (Briggs and Hoopes, 2004).

While much progress has been made for metapopulations and
for specific example systems for meta-foodwebs, a broad and
general understanding of how different factors impact the stability
of meta-foodwebs is still lacking. For instance is it unclear under
which conditions dispersal has a stabilizing impact. Furthermore,
meta-foodwebs can potentially undergo various types of instabil-
ities. The study of foodwebs has provided abundant examples of
two basic mechanisms of instability. The saddle-node bifurcation,
which can lead to the relatively sudden collapse of populations,
and the Hopf bifurcation, which gives rise to (at least transient)
oscillations. In meta-foodwebs both of these instabilities can occur
in two variants. The first of these affects all patches equally and is
thus closely related to the bifurcations in non-spatial food web
models. In the second type different patches are affected differ-
ently. They are thus reminiscent of pattern-forming instabilities
such as the Turing and wave-instabilities, which are known from
systems of partial differential equations (Segel and Jackson, 1972).
While also these bifurcations lead to instability, their impact on
the overall population density is less pronounced, and they act as
drivers of heterogeneity, which, in the long run, might benefit the
system. In addition to these four types of instabilities, meta-
foodwebs show further instabilities that occur out of the attrac-
tors created by these basic bifurcations, such as bifurcations
involving heterogeneous fixed points, and nonlocal bifurcations
involving limit cycles or strange attractors.

In order to gain an overview of the possible dynamical patterns
of a system and their requirements, the generalized modelling
approach (Gross and Feudel, 2006; Yeakel et al., 2011; Gross et al.,
2009), which is based on a linear stability analysis of steady states,
is particularly powerful. The idea behind this approach is to con-
sider models where the kinetics of some processes have not been
restricted to specific functional forms. Considering a model with a

specific structure, but containing general functions, allows cap-
turing well-known insights into the structure of the system,
without requiring often questionable assumptions on the exact
form of kinetics. Further advantages are a short computation time
and ease of biological interpretation. We will confine our study to
bifurcations out of homogeneous equilibria. This means that
instabilities of heterogeneous systems and nonlocal bifurcations
are not considered.

In this paper, we investigate the dynamics of two species on
two identical patches using the generalized modelling approach.
We are able to analyse a broad class of models that includes sev-
eral previously studied systems as special cases. We focus on the
effect of the type and strength of migration on the stability and the
dynamics of the system. We find migration in most cases to be
either destabilizing or to have a marginal effect on stability.
However, complex migration rules allow for a stabilizing influence
of dispersal and can produce saddle-node and Hopf bifurcations
and spatial-pattern forming bifurcations.

2. Model

2.1. Generalized modelling formulation

We consider a system consisting of two habitat patches, where
each patch i can potentially sustain a prey population Xi and a
predator population Yi. We assume a homogeneous system, such
that both patches are described by identical parameter values. The
population dynamics are described by

_X1 ¼ GðX1Þ�KðX1Þ�FðX1; Y1ÞþηXEXðX2; Y2;X1;Y1Þ�EXðX1; Y1;X2;Y2Þ

_Y 2 ¼ λFðX1;Y1Þ�DðY1ÞþηYEY ðX2;Y2;X1;Y1Þ�EY ðX1;Y1;X2;Y2Þ
_X2 ¼ GðX2Þ�KðX2Þ�FðX2; Y2ÞþηXEXðX1; Y1;X2;Y2Þ�EXðX2; Y2;X1;Y1Þ

_Y 2 ¼ λFðX2;Y2Þ�DðY2ÞþηYEY ðX1;Y1;X2;Y2Þ�EY ðX2;Y2;X1;Y1Þ;
ð1Þ

where we used the dot over a variable to indicate the temporal
derivative. The variables are in arbitrary units. For the purpose of
this paper we will assume that they describe the system in terms
of carbon biomass density, however, the same equations also apply
to other measures of population, such as abundance. The prey
population density changes due to a growth rate GðXiÞ, a respira-
tion/mortality rate KðXiÞ, and a rate of biomass loss by predation
FðXi;YiÞ. Predator populations have a growth term λFðXi;YiÞ, with
the prefactor λ describing the efficiency of the energy conversion.
The respiration/mortality rate of the predator is given by DðYiÞ. The
rate of emigration is EUðX;YÞ for both species U ¼ X;Y and the
migration loss factor is ηU. In the most general case, emigration
rates depend on all four populations. The case where the emi-
gration rate of population Ui is proportional to Ei and independent
of other variables corresponds to diffusive migration, otherwise
we get different versions of adaptive migration.

Modes of the form Eqs. (1) can have multiple feasible steady
states, depending one the choice of functional forms and para-
meter values. In the generalized model we cannot compute the
steady states. However, a central insight is that we can still com-
pute conditions for the stability of steady states and express them
in the form of meaningful ecological parameters. For this purpose
we consider an arbitrary feasible, but not necessarily stable
steady state.

The normalized biomasses are

xi ¼
Xi

Xn
; yi ¼

Yi

Yn
; ð2Þ
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