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H I G H L I G H T S

� We demonstrate the shortcoming of conventional “Dawesian” cooperative dilemmas.
� We define a new type of evolutionary game called division of labour games.
� We show that assortment is insufficient for cooperation to evolove in such cases.
� We show that there exist two increasing levels of fitness in such games.
� We argue that these models shed valuable light on important biological processes.
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a b s t r a c t

Multicellular organisms are characterised by role specialisation, brought about by the epigenetic dif-
ferentiation of their constituent parts. Conventional game theoretic studies of cooperation do not
account for this division of labour, nor do they allow for the possibility of the plastic expression of
phenotype. We address these issues by extending the notion of cooperative dilemmas to account for such
interaction in which heterogeneous roles are advantageous and present an extended dynamical model of
selection that allows for the possibility of conditional expression of phenotype. We use these models to
investigate systematically when selection will favour an adaptive diversification of roles. We argue that
such extensions to models and concepts are necessary to understand the origins of multicellularity and
development.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The evolution of cooperation has been a central theme of
research within evolutionary biology (Axelrod and Hamilton,
1981; Fletcher and Doebeli, 2009; Lehmann and Keller, 2006). In
nearly all such formal studies cooperation is modelled by Dawe-
sian dilemmas, most commonly the Prisoner's dilemma and clo-
sely related games (Doebeli and Hauert, 2005). A Dawesian
dilemma (Dawes, 1980; Macy and Flache, 2002) is one which
satisfies two conditions:

Dawes I There exists a single cooperative strategy whereby mean
fitness is maximised if all individuals perform this action.

Dawes II There exists an individual incentive not to perform this
action.

Hence, evolution in a freely mixed population will not lead to a
cooperative state that maximises mean fitness.

The biological systems in which Dawesian dilemmas are
usually applied have, in recent years, greatly expanded from the
study of eusocial insects and social vertebrates to a vast number of
different cases (Queller, 1997; Bourke, 2011). Of particular interest
is the extension of the notion of cooperation to the origin of
multicellularity and hence development (Buss, 1987; Maynard
Smith and Szathmary, 1997; Michod and Herron, 2006; Grosberg
and Strathmann, 2007). The cells of a multicellular organism are
often colloquially described as cooperating with one another
(Queller, 2000; Lehmann and Keller, 2006; Michod and Roze,
2001). However, the cells cannot be thought of as being engaged in
a Dawesian cooperative dilemma as there is no one phenotype
that can be considered as the cooperator. Instead the multicellular
organism is characterised by having multiple complementary cell
types (Bonner, 1993). This diversification of roles is an important
detail that conventional studies of the evolution of cooperation do
not adequately model. Whilst games such as the snow drift game
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are polymorphic at equilibrium, this does not represent a diver-
sification of roles, as the two behaviours do not complement one
another, but instead defectors simply exploit cooperators. Proto-
multicellular organisms, such as slime moulds (Strassmann et al.,
2000) and volvocine algae (Michod, 2007), often have two distinct
cell types; both of which are important for the function of the
organism; thus no one type should be thought of as the coop-
erator. To avoid semantic confusion we re-label cooperate as A and
defect as B. To reflect better the adaptive nature of role diversifi-
cation we define a Division Of Labour (DOL) game to be any game
that has the property of mean individual fitness being maximised
by a polymorphic state. We call the state that maximises fitness
the Socially Efficient State (SES).

In cooperative dilemmas freely mixed populations will not
reach the SES. This, in general, will also be the case for DOL games.
We thus retain the label of cooperative dilemmas in such cases;
whilst not adhering to Dawes I. Structuring of interactions, and
specifically positive assortment on cooperative phenotypes, is
often claimed to be the central resolution to cooperative dilemmas
(Eshel and Cavalli-Sforza, 1983; Fletcher and Zwick, 2006; God-
frey-Smith, 2008). However, in the limit, positive assortment of
cooperators removes heterogeneity and thus cannot maximise
fitness in a DOL game. Complete positive assortment can only ever
lead to interaction between individuals of the same type, whereas
fitness in DOL games is maximised if all interactions are between
unlike types. This apparent paradox, between the need for het-
erogeneity of roles to gain from specialisation/complementary
functions and homogeneity to resolve the cooperative dilemma
can only be overcome if the individuals can express a phenotype
conditionally upon their social environment (including, poten-
tially, a phenotype conditioned on the phenotype of their parent
(s)). This is so that individuals can have a positive assortment on
genotype, i.e. relatedness, whilst simultaneously creating a nega-
tive assortment on phenotype. These are features of biological
systems that conventional game theoretic models do not account
for. They are, however, crucial for understanding the origins of
development and multicellularity; in which the epigenetic deter-
mination of phenotype plays a key role (Lachmann and Sella,
2003; Jablonka and Lamb, 2006).

Stark (2010) studies dilemmas of partial cooperation, which are
mathematically equivalent to DOL games, and concludes that
partial levels of cooperation maximise fitness in certain types of
dilemma. However, as we shall show, this mixture of strategies is
not optimal if one takes into account the structuring of interac-
tions, as fitness can be increased further if one allows for a com-
plete negative assortment on phenotype. Furthermore, Stark con-
cludes that an intermediate level of assortment will allow the
population to reach the SES, which we show is not the case (see
Section 3), as his argument does not account for how the SES is
altered by assortment. Other authors (Neill, 2003; Browning and
Colman, 2004; Tanimoto and Sagara, 2007) have analysed the
turn-taking solution to DOL games. They conclude that if indivi-
duals alternate sequentially between strategies then the dilemma
can be resolved. En route to multicellularity it may be the case that
unicellular organisms employ life cycle stages that alternate
between roles, but true multicellular organisms have cells that
remain specialised for the entirety of their life, as the alternation
of cell type is either costly or unfeasible (Michod, 2007). Therefore,
we study solutions in which individual cells are constrained to
stick to a single phenotype after development.

Previous studies have taken the evolution of specialisation and
the evolution of cooperation as separate problems, the latter often
modelled via cooperative dilemmas such as the prisoner's
dilemma (Doebeli and Hauert, 2005; Fletcher and Doebeli, 2009;
Traulsen and Nowak, 2006). These two problems have therefore
previously been studied largely in isolation. This paper formulates

the issue of specialisation via a simple extension of existing
cooperative dilemmas. We thereby relate the relatively under-
studied problem of specialisation, to a problem that has been
studied extensively: cooperation.

A number of papers have looked at models in which individual
components can potentially specialise in a number of set tasks and
further investigate the conditions under which specialisation may
occur. In particular both Gavrilets (2010) and Michod and Herron
(2006) look at a model in which individual cells can specialise in
one of two tasks relating to fecundity and viability, or alternatively
remain as generalists. In these models the groups benefit from
having both tasks performed together, but there is an inefficiency
cost for individual cells to perform both. If the inefficiency is large
enough then specialisation may evolve. Ispolatov et al. (2012)
analyse a model in which group structure is not presupposed and
is itself an endogenous parameter of evolution. This is embodied
through a stickiness parameter. Again they conclude that specia-
lisation and group structure can evolve in a certain region of
parameter space, where here the important parameters are the
cost of stickiness and the inefficiency cost for a single cell to per-
form both actions together. Willensdorfer (2009) presents a
similar study, but formulates the model in terms of the fitness of a
pre-existing group on which selection acts. The model is phrased
in terms of three key parameters: the cost of somatic function, the
cost of size (i.e. number of cells) and the benefit of group living.
Whilst the authors derive some mathematical results about when
specialisation will evolve, and to what extent, they do not address
the problem of cooperation per se as selection at the colony level is
presupposed. Rueffler et al. (2011) present a model, in which pre-
existing colonies begin in an entirely undifferentiated state and
then subsequently can evolve specialisation. As in other studies,
whether or not this will happen depends upon the detailed rela-
tionship between a number of parameters involving the costs and
benefits of specialisation. All of these studies are reviewed in more
detail in Hanschen et al. (2015).

Whereas in all previous studies (summarised above) groups are
essentially undifferentiated bags of cells performing one of two
tasks, our model properly considers the internal structure of
interactions. We thereby consider an additional step towards the
evolution of new levels of individuality. In addition to group for-
mation and specialisation we recognise that a more detailed and
controlled structuring of interaction is necessary for the evolution
of multicellularity. Furthermore, we claim that this can only come
about through phenotypic plasticity and that mixed strategies that
have no context-sensitive expression are insufficient.

In the following section we give a full categorisation of two-
player symmetric DOL games and in Section 3 discuss two differ-
ent notions of social efficiency and how these are effected by
population structure. In Section 4 we briefly study some biological
examples of DOL games from a number of different fields. In
Section 5 we extend traditional models of evolutionary game
theory in order to allow for the possibility of conditional expres-
sion of phenotype.

2. Categorisation of DOL games

We restrict our attention to symmetric two-player cooperative
dilemmas, as all our key points can be understood fromwithin this
simple framework. All symmetric two-player cooperative dilem-
mas can be represented via a two-by-two payoff matrix, M, with
four parameters: R; S; T ; P (Rapoport and Guyer, 1967) (see Eq. (1)).
M can be simplified due to the fact that payoff is relative. One can
multiply all payoffs by a positive constant without qualitatively
changing the features of the game (although this alters the speed
of selection). Likewise, one may also add a constant to every payoff
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