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H I G H L I G H T S

� Assortative matching is studied in various social dilemmas.
� Assortativity is endogenized via democratic consensus.
� The matching process co-evolves with cooperation.
� The long-run levels of cooperation are evaluated.
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a b s t r a c t

Assortative mechanisms can overcome tragedies of the commons that otherwise result in dilemma
situations. Assortativity criteria include various forms of kin selection, greenbeard genes, and reciprocal
behaviors, usually presuming an exogenously fixed matching mechanism. Here, we endogenize the
matching process with the aim of investigating how assortativity itself, jointly with cooperation, is driven
by evolution. Our main finding is that full-or-null assortativities turn out to be long-run stable in most
cases, independent of the relative speeds of both processes. The exact incentive structure of the
underlying social dilemma matters crucially. The resulting social loss is evaluated for general classes of
dilemma games, thus quantifying to what extent the tragedy of the commons may be endogenously
overcome.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

What happens when a population would collectively benefit
from cooperative behavior by all its individuals, while each indi-
vidual has a private incentive to defect? In some such ‘social
dilemma’ situations, collective action (Olson, 1965) may fail and
the tragedy of the commons (Hardin, 1968) may result. However,
many mechanisms in nature exist through which cooperative
behaviors evolve (see Sachs et al., 2004; West et al., 2007, 2011, for
reviews). Hence, the ‘puzzle of cooperation’ (Darwin, 1871) is that
nature, involving humans and animals alike, provides us with
many examples of social dilemma situations that are successfully
resolved by suitable mechanisms, but also with many other
examples that result in the tragedy of the commons.

Perhaps the best methodology to study the evolution of coop-
eration is provided by game theory (von Neumann and Morgenstern,
1944; Nash, 1951). Without suitable mechanisms, game theory
predicts non-cooperative behavior in social dilemmas. The game-

theoretic literature has addressed this issue at length (beginning with
Hamilton, 1963, 1964a,b; Axelrod, 1984). It was shown that coop-
eration in social dilemma situations is not favored if interactions in
the population are well-mixed/random (Nash, 1950; Lehmann and
Keller, 2006; Young, 2011).

The class of mechanisms that we study in this paper function
by assorting cooperators. The first accounts of assortative
mechanisms date back to Wright (1921, 1922, 1965). Indeed, such
mechanisms can lead to cooperative behavior in social dilemma
situations; well-known examples include kin selection (Hamilton,
1964a,b; Domingue et al., 2014) via limited dispersal/locality
(‘spatial interactions’; Nowak and May, 1992; Eshel et al., 1998;
Skyrms, 2004; Hauert, 2006; Abdellaoui et al., 2014), greenbeard
genes (Dawkins, 1976; Frank, 2010; Jansen and Baalen, 2006;
Sinervo et al., 2006; Brown and Fuckling, 2008; Fletcher and
Doebeli, 2009, 2010; Gardner and West, 2010), preferences
(‘homophily’; Alger and Weibull, 2012, 2013; Xie et al., 2015),
or are based on behavior (‘reciprocal/meritocratic matching’;
Clutton-Brock, 2010; Gunnthorsdottir et al., 2010; Rabanal and
Rabanal, 2014; Nax et al., 2014, 2015). Importantly, assortment
based on behavior is key for (but not restricted to) sustaining
cooperation in humans as both theoretical models (Biernaskie
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et al., 2011) and experiments (Wang et al., 2012) show. In this
study we focus on this class of behavior-assortative mechanisms.

Under sufficiently assortative mechanisms, high levels of
cooperation are predicted (e.g. Hamilton and Taborsky, 2005a,b;
Bergstrom, 2003; Jensen and Rigos, 2014; Nax et al., 2014). It is
unlikely, however, that assortativity fell from the sky. More likely,
it evolved driven by evolutionary dynamics within the population
and across populations. In this paper, we contribute to the assor-
tativity literature by providing a model to endogenize the evolu-
tion of assortativity, in particular of behavior.

In our model, assortativity evolves by ‘democratic consensus’, a
standard mechanism to reach consensus in humans. Democratic
consensus therefore is a natural candidate for studying the evo-
lution of behavior assortativity, which is particularly relevant for
human interactions (Biernaskie et al., 2011). Known as range,
average, cardinal, utility or score voting in voting theory, such
decision-making rules are used by numerous (proto-)democratic
human collectives (Staveley, 1972). Voting by clapping/shouting,
financial lobbying, and other mechanisms resembling a tug-of-
war-like competition in two opposite directions are examples. The
basic feature of democratic consensus in our model is that the
underlying mechanism of our interaction gets more or less
assortative depending on which direction yields greater surplus.
Democratic consensus is also similar to biological auctions, which
are aggregation rules used by many animal species (Couzin et al.,
2011; Chatterjee et al., 2012) such as bees selecting hive-locations
(Seeley and Visscher, 2004) or ants choosing nest sites (Franks et
al., 2002). To the best of our knowledge there exists no comparable
prior study of evolving assortativity based on democratic con-
sensus dynamics. In biology, other models have been proposed
based on different factors such as invasion by mutants (Dieckmann
and Doebeli, 1999; Jiang et al., 2013; Dyson-Hudson and Smith,
1978; Bearhop, 2005). Related is also Newton (2014) who studies
evolving assortativity in the indirect evolutionary models by Alger
and Weibull (2012, 2013, 2014, 2015). Other ways of endogenizing
the matching rule such as dynamical networks may lead to dif-
ferent results, and these are avenues for further research we shall
sketch in our concluding discussion.

In terms of underlying games, we focus on a class of symmetric
two-player social dilemmas that nests the standard prisoners'
dilemma (PD) (Rapoport and Chammah, 1965) but also includes
other games. All agents are of the same kind, one whose strategy
choices are driven by his own material self-interest alone. All
social dilemmas we consider, not just the PD, are important
situations that often occur in reality with potential detrimental
consequences to cooperation.

The PD is the best-known example of social dilemmas, that is,
of situations with the common characteristic that individuals have
an incentive to defect when facing cooperators. The evolution of
cooperation amongst humans and animals in social dilemma
situations has received enormous attention, and the PD in parti-
cular has been studied widely in this context beginning with Tri-
vers (1971) and Maynard Smith and Price (1973); Maynard Smith
(1987) (see also Axelrod and Hamilton, 1981). Beyond the PD,
there are related, less well-known social dilemmas of comparable
practical importance. All our social dilemmas share the public
goods character, but games differ with respect to which outcomes
(i) are Nash equilibria and (ii) maximize total payoffs.

Our social dilemma situations include the prisoners' dilemma,
the snowdrift game (also known as the hawk-dove game, the
game of chicken, or the volunteer's dilemma, Maynard Smith and
Price, 1973; Doebeli and Hauert, 2005; Diekmann, 1985; Myatt and
Wallace, 2008; Raihani and Bshary, 2011), the missing hero
dilemma (Schelling, 1971) and the underprovision dilemma. As a
byproduct of our operationalization, we introduce the ‘under-
provision dilemma’, a variant of the snowdrift game, which to the

best of our knowledge has not previously been considered but
certainly also represents an important class of games deserving
investigation.

Our dynamical analyses rely on standard evolutionary repli-
cator (Taylor and Jonker, 1978; Taylor, 1979). In the standard
mathematical formulation of such a dynamic (e.g. Eshel, 1983;
Helbing, 1992; Weibull, 1995; Eshel et al., 1997), we would assume
a well-mixed population, that is, pairs would be drawn uniformly
at random from the population. Here, we shall focus on action-
assortative matching instead, using recently introduced methods
(Bergstrom, 2003; Jensen and Rigos, 2014). In our dilemma games,
such a rule is ‘meritocratic’ as it matches cooperators (defectors)
with other cooperators (defectors). Assortativity itself evolves by
democratic consensus. In the PD game, for example, cooperators
prefer more assortativity in order to be matched less often with
defectors, while defectors prefer less assortativity for the opposite
reason. In which direction this struggle evolves depends on how
many people stand on either side, and by how much they benefit
from either change.

Our analysis proceeds in three steps. First, we study the stabi-
lity of equilibria given an exogenous level of assortativity. Second,
we endogenize the evolution of assortativity and investigate the
stability of regimes under our voting dynamic. Finally, we evaluate
which outcome is more stable in the long run.

2. The model

2.1. Social dilemmas

We start by laying out the general setup. Here, we have an
infinite population taken to be the closed interval ½0;1� that can
follow one of the two strategies, either ‘cooperate’ (C) or ‘defect’
(D). (Alternative labels could be ‘contribute’ and ‘free-ride’.)
Denote by x the proportion of individuals playing C. Individuals in
the population follow one of the two strategies, get matched to
one other individual in the population, and then carry out their
strategy in their pair. The exact process by which they get selected
in pairs will be discussed in the next section.

Social dilemma: A social dilemma game in our setting is
represented by a matrix of the form shown in Table 1.

Hence a social dilemma is defined by G¼ ðr; aÞ. To ensure that
C–C is not an equilibrium under random matching, we impose 0
oro1 for all G, which defines the common ‘public goods char-
acter’: defection is always an individual best response against
cooperation, but cooperation always increases the opponent's
payoff. Moreover, we restrict aAð�1; rÞ, so that C–D outcomes are
associated with either higher or lower total payoffs than C–C,
while D–D remains the outcome with lowest total payoffs in all
cases. We therefore investigate the following four different types
of (well-known) social dilemma games:

Prisoners' dilemma (Rapoport and Chammah, 1965): The PD
game is obtained by setting 2r41þa and ao0. Defection is a
strictly dominant strategy, and total payoffs are highest in C–C. The
unique Nash equilibrium is D–D.

Snowdrift game: The SD game is obtained by setting 2ro1þa and
a40. Cooperation is a best response against defection, and the

Table 1
The payoff matrix of a social dilemma.
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