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H I G H L I G H T S

� We examine the effect of migration patterns on the initial phase of an epidemic.
� We aim to minimise the expected growth rate and basic reproduction number.
� An explicit optimal distribution of susceptible individuals is found.
� This distribution is optimal for probability of extinction and total size of the epidemic.
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a b s t r a c t

We consider a model for an epidemic in a population that occupies geographically distinct locations. The
disease is spread within subpopulations by contacts between infective and susceptible individuals, and is
spread between subpopulations by the migration of infected individuals. We show how susceptible
individuals can act collectively to limit the spread of disease during the initial phase of an epidemic by
specifying the distribution that minimises the growth rate of the epidemic when the infectives are
migrating so as to maximise the growth rate. We also give an explicit strategy that minimises the basic
reproduction number, which is also shown be optimal in terms of the probability of extinction and total
size of the epidemic.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a number of papers have been devoted to the issue of
controlling disease outbreaks. Typical mechanisms for control
involve treatments which speed recovery (Ndeffo Mbah and Gil-
ligan, 2011; Rowthorn et al., 2009), culling of infected individuals
(Ndeffo Mbah and Gilligan, 2010), reducing the density of disease
vectors (Mpolya et al., 2014), vaccination programs (Klepac et al.,
2012, 2011) and quarantine (Rowthorn et al., 2009). When the
population has some spatial structure, migration also plays an
important role in disease spread and provides a further control
mechanism.

A common approach to incorporating spatial structure in epi-
demic modelling is to impose a metapopulation structure on the
population (see Débarre et al., 2007; Grenfel and Harwood, 1997;

Gurarie and Seto, 2009; Hess, 1996 for example). In a metapopu-
lation, the population is divided into a number of subpopulations
occupying geographically distinct locations. The disease is spread
within a subpopulation by contacts between infective and sus-
ceptible individuals and is spread between subpopulations by the
migration of infected individuals.

The effect of migration rates on disease spread in metapopu-
lations has been investigated in a number of papers. Due to the
complexity of these models, control strategies are often based on
minimising the basic reproduction number R0. Studying a multi-
patch frequency dependent SIS model, Allen et al. (2007) note that
the rapid movement of infective individuals can lead to disease
extinction in low risk environments. Furthermore, they conjecture
that R0 is a decreasing function of the diffusion rate for infective
individuals. Hsieh et al. (2007, Theorem 4.2) note a similar result
for their two-patch SEIRP model and a similar phenomenon has
been observed in population models with spatially heterogeneous
environments (Hastings, 1983). However, Gao and Ruan (2012,
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Section 4) have shown that for other models the dependence of R0
on migration rates can be more complex. To investigate the effect
of the migration rates on other quantities such as the number of
infected individuals, numerical methods are generally required
(for example Sanders et al., 2012).

In this paper, we examine how susceptible individuals can act
collectively to limit the spread of disease during the initial phase
of an epidemic. More specifically, we consider how susceptible
individuals can distribute themselves in the metapopulation in a
way that minimises the growth of the epidemic when the infec-
tives migrate so as to maximise the growth. By formulating the
problem as a minimax optimisation and focusing on the suscep-
tible individuals, we avoid the need to distinguish between
infected and susceptible individuals when applying controls to the
population. This is advantageous as identification of infected
individuals can be problematic due to factors such as delays in the
onset of symptoms, asymptomatic carriers and costs associated
with testing. Furthermore, acute disease can have a significant
effect on the behaviour of animals (Hart, 1988). This is particularly
true for certain parasitic diseases where the parasite attempts to
force the host to act in a manner which assists the propagation of
the parasite (Adamo, 2013).

In Section 2 we give our main results. Instead of using an
ordinary differential equation (ODE) model for the epidemic as
was done in the papers cited above, our analysis is based on a
branching process model. Branching processes are known to pro-
vide a good approximation to the standard SIR and SIS Markov
chain models when the number of infectives is initially small
(Clancy, 1996). Using this model, we are able to give an explicit
strategy that minimises the expected rate of growth under a cer-
tain condition on the recovery and infection rates. We also give an
explicit strategy that minimises the basic reproduction number
which does not require this extra condition. This later strategy is
shown to also be optimal in terms of the probability of extinction
and total size of the epidemic. In Section 3, the problem of mini-
mising the expected growth rate is investigated numerically. The
paper concludes with a discussion of how the results depend on
contact rates and how they relate to ODE models.

2. Minimising disease spread in the initial stages

Consider a closed population of size N divided into m groups
such that at time t group i contains XiðtÞ susceptibles and YiðtÞ
infectives. Each individual, conditional on its disease status, moves
independently between groups according to an irreducible Markov
process on f1;…;mgwith transition rate matrix R if it is susceptible
and transition rate matrix Q if it is infected. The epidemic evolves
as a Markov process. Contacts between individuals in the same
group are assumed to be density dependent (Begon et al., 2002).
More precisely, a pair of individuals in group imakes contact at the
points of a Poisson process of rate βi=N with contacts between
distinct pairs of individuals being mutually independent. It is
assumed that contact between an infective and a susceptible
results in the infection of the susceptible. An infected individual in
group i recovers with immunity at a rate γi. Since we are primarily
concerned with the initial phase of the epidemic, our conclusions
remain valid for epidemics where individuals recover without
immunity.

In the absence of infective individuals, the entirely susceptible
population evolves following a closed (linear) migration process
with per-capita migration rates R. If the population is in equili-
brium, then the probability that an individual is in group i is given
by πi where π is the unique solution to πR¼ 0 subject to the
constraint π1¼ 1.

We consider the spread of the disease from a small number of
initial infective individuals. Clancy (1996, Theorem 2.1) shows that,
when N is large, the epidemic can be approximated by a multi-
type branching process. Assuming that the susceptible population
is in equilibrium, the branching process for the number of infective
individuals is given by

ðY1;…;YmÞ-ð…;Yiþ1;…;Yj�1;…Þ at rate QjiYj; ð1Þ

ðY1;…;YmÞ-ð…;Yiþ1;…Þ at rate βiπiYi; ð2Þ

ðY1;…;YmÞ-ð…;Yi�1;…Þ at rate γiY i: ð3Þ
Note that the branching process depends on R only through the
equilibrium distribution π.

Suppose that the susceptible population aims to minimise some
quantity f ðπ;Q Þ, calculated from the branching process determined by
(1)–(3). Let S denote the relative interior of the ðm�1Þ-simplex and let
Q be the set of irreducible migration rate matrices. Without imposing
any constraints on the movements of the infectives, the susceptible
population can choose π such that, for any ϵ40, a value no larger
than infπAS supQ AQ f ðπ;Q Þþϵ is attained. On the other hand, the
infectives can migrate in such a way that, for any ϵ40, a value no
smaller than supQ AQinfπAS f ðπ;Q Þ�ϵ is attained. In general,

sup
Q AQ

inf
πAS

f ðπ;Q Þr inf
πAS

sup
Q AQ

f ðπ;Q Þ

(Petrosjan and Zenkevich, 1996, Lemma in Section 1.2.2). A pair ðπn;

QnÞAS �Q such that

f ðπn;Q Þr f ðπn;QnÞr f ðπ;QnÞ;
for all πAS and all QAQ is called a saddle point for f. If a saddle point
exists, then

min
πAS

sup
Q AQ

f ðπ;Q Þ ¼max
Q AQ

inf
πAS

f ðπ;Q Þ

(Petrosjan and Zenkevich, 1996, Theorem in Section 1.3.4). The sus-
ceptibles can attain this value by distributing themselves amongst the
groups according to πn. When a saddle point for f does not exist, there
may still be an ϵ-saddle point, that is, for every ϵ40 there exists a pair
ðπϵ;QϵÞAS �Q such that

f ðπϵ;Q Þ�ϵr f ðπϵ;QϵÞr f ðπ;QϵÞþϵ;

for all πAS and all QAQ. The existence of an ϵ-saddle point implies
that

inf
πAS

sup
Q AQ

f ðπ;Q Þ ¼ sup
Q AQ

inf
πAS

f ðπ;Q Þ ¼ lim
ϵ-0

f ðπϵ;QϵÞ

(Petrosjan and Zenkevich, 1996, Theorem in Section 2.2.5). In the fol-
lowing, we determine the ðϵÞ-saddle points for four quantities derived
from the branching process (1)–(3).

As mentioned in the Introduction, this formulation avoids the
need to distinguish between susceptible and infected individuals
in the application of controls. To illustrate this point, suppose that
susceptible individuals normally move between groups following
a Markov process with migration rate matrix R. The optimal dis-
tribution of susceptibles πn can be obtained by border controls
where a migrating individual from group j going to group i is given
admittance with probability pji and otherwise returned to group j.
Detailed balance equations show that the optimal distribution for
susceptibles is obtained if the admittance probabilities satisfy

Rjipjiπ
n

j ¼ Rijpijπ
n

i ;

for all i; j. Although the border controls will have an effect on the
migration rate of infected individuals if they are applied to the
population as a whole, the optimal distribution for susceptible
individuals ensures that the growth of the epidemic can be no
greater than minπAS supQ AQ f ðπ;Q Þ.
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