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H I G H L I G H T S

� We introduce one of the first mathematical models of tumour invasion with growth thresholds.
� Only biologically relevant travelling wave fronts exist, opposing earlier models.
� Experimental observations in tumour spread are uncovered in our model.
� We show the relevance of incorporating the Allee effect in tumour spread.
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a b s t r a c t

A recent study by Korolev et al. [Nat. Rev. Cancer, 14:371–379, 2014] evidences that the Allee effect—in its
strong form, the requirement of a minimum density for cell growth—is important in the spreading of
cancerous tumours. We present one of the first mathematical models of tumour invasion that incor-
porates the Allee effect. Based on analysis of the existence of travelling wave solutions to this model, we
argue that it is an improvement on previous models of its kind. We show that, with the strong Allee
effect, the model admits biologically relevant travelling wave solutions, with well-defined edges. Fur-
thermore, we uncover an experimentally observed biphasic relationship between the invasion speed of
the tumour and the background extracellular matrix density.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Allee effects and tumour growth

A recent article in Nature Reviews Cancer, (Korolev et al., 2014),
has highlighted how a well-established concept in ecology—the
Allee effect (Allee, 1938)—is also relevant to tumours but has yet to
be incorporated into their modelling. In its strong form, the Allee
effect refers to the observation that there is a population threshold
below which a species has negative population growth, driving it to
extinction. The weak form of the Allee effect describes a species that
has small (but not negative) population growth at low populations
(Courchamp et al., 2008). The ecological causes of Allee effects
(which are observed within small populations) are multitudinous:
the inability to find a mate; the negative impact on co-operative
behaviours such as anti-predator vigilance; the increased sensitivity
to demographic stochasticity; and, the lack of diversity in the extant

gene pool (Courchamp et al., 1999; Keitt et al., 2001; Stephens and
Sutherland, 1999). Evidence for the strong (Berger, 1990; Courch-
amp and MacDonald, 2001; Groom, 1998; Johnson et al., 2006;
Lamont et al., 1993) and weak (Allee, 1938; Angulo et al., 2007;
Davis et al., 2004; Tang et al., 2014; Taylor et al., 2004) Allee effects
are plentiful across many taxa; additional reviews are available in
Gregory et al. (2010); Kramer et al. (2009). Consequently, there is a
proliferation of mathematical models of the Allee effect in ecology
(e.g. Balasuriya, 2010; Balasuriya and Gottwald, 2010; Cushing,
2014; Hart and Aviles, 2014; Kribs-Zaleta and Mitchell, 2014; Lewis
and Kareiva, 1993; Potapov and Rajakaruna, 2013; Yamamichi et al.,
2014). While studies in ecology often worry about factors that
might push a threatened species below the (strong) Allee threshold
and thereby towards extinction (e.g. Sanderson et al., 2014), an
intriguing possibility in cancer research is whether the Allee effect
could be harnessed for controlling or negating the growth of can-
cerous cells (Korolev et al., 2014), consonant with recent experi-
ments in bacteria (Smith et al., 2014).

While seldom stated, hints of the Allee effect are numerous in the
cancer research literature. Firstly, at the most anecdotal level, a tumour
is only deemed threatening if it is above a certain size, which is an
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implicit presumption of a strong Allee threshold. More concrete
illustrations are available in clinical trials for papillary and follicular
thyroid cancers (Machens et al., 2005), in which risk-of-spread versus
initial tumour size figures indicate that the risk is effectively zero until
a minimum primary tumour size is reached. Secondly, studies of
tumour dormancy suggest the presence of mechanisms such as a
restrictive apoptosis/proliferation equilibrium (a cell density at which
natural cell death balances new cell production) or a minimum
angiogenic potential requirement for blood vessel formation in the
tumour (Ruppender et al., 2013). Such biological considerations
translate to the inability of the tumour to grow unless a strong Allee
threshold is reached. Thirdly, it has been shown experimentally that in
the growth of blebs (spherical protrusions forming along the front
boundary of tumours), there is a minimum surface tension below
which the blebs cannot expand (Tinevez et al., 2009). Since this sur-
face tension is governed by a variety of poorly understood factors such
as available myosin (Tinevez et al., 2009), the existing microenviron-
ment can be thought of as essentially imposing an Allee effect.
Fourthly, Axelrod et al. (2006) and Pienta et al. (2008) provide evi-
dence of the co-operation between nearby subclones in the early
evolution of tumours through the production and exchange of growth
factors. Since co-operation is adversely impacted at low populations,
tumour cells must—as in ecological systems—encounter the Allee
effect. Fifthly, deleterious mutations accumulate more in smaller
tumours (Korolev et al., 2014), thereby driving the population to
extinctionwith much higher probability than larger tumours. Sixthly—
and at a much broader level—the very fact that cancers depend on
genetic heterogeneity, mutations and subsequent evolution (Burrell
et al., 2013; Greaves andMaley, 2012; Merlo et al., 2006), pinpoints the
necessity of having a large enough gene pool for successful growth,
that is, the requirement of an Allee effect.1 For example, numerical
results from a recent integral equation model that models the number
of cells in clones with different mutation rates, indicate that there is a
threshold genetic mutation rate below which the cancer cells suffer
extinction (Amor and Solé, 2014). It is important to note that most
evolutionary models of cancer (see the reviews by Merlo et al., 2006
and Michor et al., 2004) neglect the spatial structure, which is pro-
blematic given that tumours are clinically classified depending on
their shape (Connolly et al., 2000). One way of incorporating genetic
mutation information within a spatial spreading model is to treat the
stochastic mutations as creating an effective strong Allee threshold.

There are a variety of tumour growth models which examine
the roles of additional effects such as acidity (Gatenby and Gaw-
linski, 1996; McGillen et al., 2014; Bertuzzi et al., 2010), adhesion
(Chaplain et al., 2011; Gerisch and Chaplain, 2008; Sherratt et al.,
2009), non-local interactions (Szymanska et al., 2009; Gerisch and
Chaplain, 2008), cell plasticity in proliferation versus migration
(Gao et al., 2005; Hatzikirou et al., 2012; Tektonidis et al., 2011;
Martínez-González et al., 2012), in a range of tumour types. Most
models fall into two classes: those which simulate a network of
cells (Tektonidis et al., 2011; Hatzikirou et al., 2012), and those
which rely of continuum modelling (e.g. Chaplain et al., 2011;
McGillen et al., 2014; Szymanska et al., 2009; Gatenby and Gaw-
linski, 1996; Sherratt et al., 2009; Martínez-González et al., 2012),
although some models that make a connection between the two
exist, (e.g. Painter and Hillen, 2013; Bellomo et al., 2010; Engwer
et al., 2015). Very recently, a spatio-temporal tumour cell growth
model incorporating micro-environmental influences has been
studied. That analysis reveals an Allee effect depending on the cell
motility versus local cell density, (Böttger et al., 2015).

1.2. A new model for malignant tumour invasion

In light of this emergent viewpoint on the relevance of the Allee
effect in cancers, we offer in this paper, one of the first cancer
spreading model that explicitly includes the Allee effect. Specifi-
cally, we examine how the inclusion of the Allee effect changes
conclusions in comparison to the commonly used logistic growth
model. For our comparison – the first of its kind – we choose to
examine a model of a malignant, solid tumour invading through the
extracellular matrix (ECM) via hapto- or chemotaxis, as opposed to
the more complex, metastatic dissemination regime (Wells et al.,
2013). In particular, our analysis applies to the spread of tumours in
which hapto- or chemotaxis is the dominant mechanism of cell
migration, such as melanoma (Marchant et al., 2000; Perumpanani
and Byrne, 1999). We focus on the behaviour of the tumours on a
long time scale; we do not analyse the transient dynamics.

We assume that an invasive tumour front can be modelled,
mathematically, by a travelling wave solution (TWS) with constant
speed c. TWSs correspond to stationary solutions in an appropriately
moving frame and are defined on a one-dimensional, unbounded
spatial domain. While this choice of domain is a simplification of the
geometry of tumour invasion, it is a reasonable approximation, while
still yielding a model that is amenable to mathematical analysis.

We build on a model of malignant tumour invasion derived in
Perumpanani et al. (1999) and subsequently studied in Harley
et al. (2014a); Marchant et al. (2000). In these articles, a logistic
growth term is used to model the growth of the cancer cells (see
Section 1.4); Allee effects are neglected. Here, we replace this
logistic growth term with an Allee growth term and study the
existence of TWSs of the following dimensionless model for
malignant tumour invasion (see Section 2 for the derivation):
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f u;wð Þ ¼ f Allee w; αð Þ ≔ w 1�wð Þ w�αð Þ; jαjo1: ð2Þ
The dependent variables uZ0 and wZ0 represent the dimen-

sionless ECM and cancer cell densities, respectively. The independent
variables t40 and xAR represent time and one-dimensional space,
respectively. Both species are assumed to diffuse slowly, which is
modelled by the small parameter ε: 0rε⪡1. We further assume that
the ECM diffuses more slowly than the cancer cells: 0rβr1 and β
independent of ε. Observe that our analysis is also able to capture the
situation of the ECM not diffusing, i.e. β¼ 0. The observed migration
of the cancer cells up the gradient of ECM is modelled by the hapto-
or chemotaxis term. As the cancer cells migrate they break down the
ECM; this is modelled by the proteolysis term. The cubic function
describing the growth of the cancer cells, (2), models the Allee effect,
with different values of α corresponding to different strengths.
Consistent with the definition in Section 1.1, the Allee effect mod-
elled by (2) describes the following.

A positive α models the strong Allee effect. Since the carrying
capacity of the cancer cell density has been scaled to one in (2), we
require αo1. The strong Allee effect imposes a growth threshold
on the tumour, whereby the cancer cell population only increases
(at a given location) if αowo1, since otherwise f Alleer0. See also
Fig. 1. In the context of tumour invasion, α⪆0 is the most appro-
priate representation of the strong Allee effect as it is unlikely that
a large threshold value (relative to the carrying capacity) is needed
for the proliferation of cancer cells.

1 This is stating that genetic diversity produces an implicit Allee effect, dif-
ferent from studies on the impact of a separately imposed Allee effect on genetic
diversity (Wittman et al., 2014a,b).
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