
A monoecious and diploid Moran model of random mating

Ola Hössjer a,n, Peder A. Tyvand b

a Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
b Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, N-1432 Ås, Norway

H I G H L I G H T S

� A diploid monoecious Moran model is proposed for random mating with possible selfing.
� The Moran model is compared with a diploid and monoecious Wright–Fisher model.
� Diffusion approximations are derived on two time scales.
� Genotype frequencies oscillate as an Ornstein–Uhlenbeck process on the local time scale.
� Fixation index fIS oscillates as an Ornstein–Uhlenbeck process around a fixed point.
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a b s t r a c t

An exact Markov chain is developed for a Moran model of random mating for monoecious diploid
individuals with a given probability of self-fertilization. The model captures the dynamics of genetic
variation at a biallelic locus. We compare the model with the corresponding diploid Wright–Fisher (WF)
model. We also develop a novel diffusion approximation of both models, where the genotype frequency
distribution dynamics is described by two partial differential equations, on different time scales. The first
equation captures the more slowly varying allele frequencies, and it is the same for the Moran and WF
models. The other equation captures departures of the fraction of heterozygous genotypes from a large
population equilibrium curve that equals Hardy–Weinberg proportions in the absence of selfing. It is the
distribution of a continuous time Ornstein–Uhlenbeck process for the Moran model and a discrete time
autoregressive process for the WF model. One application of our results is to capture dynamics of the
degree of non-random mating of both models, in terms of the fixation index fIS. Although fIS has a stable
fixed point that only depends on the degree of selfing, the normally distributed oscillations around this
fixed point are stochastically larger for the Moran than for the WF model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical haploid Wright–Fisher model of population
genetics describes random mating in discrete generations without
overlap (Fisher, 1922; Wright, 1931). As a contrast the haploid
Moran model (Moran, 1958a) of population genetics has a higher
degree of continuity between consecutive generations, as it
exchanges one individual at discrete or continuous time points. A
diploid and dioecious (two-sex) version of the discrete time Moran
model was introduced by Moran (1958b). It has a more compli-
cated state space, with genotype frequencies for males and
females, so that exact computation becomes unfeasible for all but

very small populations. In this paper we develop an exact Markov
process for a simpler monoecious (one-sex) diploid Moran model
with possible selfing, at a biallelic locus. It has a simpler state
space, where only two genotype frequencies are needed to analyze
the dynamics of the population, in discrete or continuous time.

There is also a monoecious and diploid Wright–Fisher (WF)
model, see for instance Moran (1958c), Crow and Denniston
(1988), Tyvand (1993) and references therein. We will compare the
exact Markov chains for the monoecious and diploid Moran and
WF models, and in particular check the validity of the standard
equivalence-time scaling that connects the two models. In order to
facilitate this comparison, we develop diffusion approximations
for both models that are increasingly accurate for large popula-
tions. It is well-known (Watterson, 1964, Ethier and Nagylaki,
1980, 1988) that such approximations work on two different time
scales in terms of a system of two partial differential equations
instead of one. The first equation is the same for the Moran and
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WF models. It describes the slower allele frequencies dynamics in
the same way as for the haploid Moran and WF models (Kimura,
1955). The second equation operates on a more local time scale,
and it is different for the Moran and WF models. It captures the
more rapidly varying departure of the fraction of heterozygous
genotypes from a large population equilibrium curve that corre-
sponds to Hardy–Weinberg (HW) proportions when there is no
selfing.

Previous work for diploid models have shown that the allele
frequency process dominates for large populations, and that the
oscillations around the equilibrium curve are asymptotically neg-
ligible. Here we rescale the latter and obtain a nondegenerate limit
that has the more slowly varying allele frequency process as a
fixed parameter. This makes the frequency oscillations of the
heterozygous genotypes locally time invariant and normally dis-
tributed around the equilibrium curve. It is a stationary Gaussian
(Ornstein–Uhlenbeck, OU) process in continuous time for the
Moran model, and an autoregressive process in discrete time for
the WF model.

A similar autoregressive limit process has previously been
obtained by Korolyuk and Korolyuk (1995), and Coad (2000) in a
different context, to model allele frequency fluctuations of a
diploid Wright–Fisher model with balancing selection. However,
these oscillations are one-dimensional and do not surround an
equilibrium curve, but rather a stable fixed point. Norman (1975)
also obtains normally distributed fluctuations of allele frequencies,
but in the context of a monoecious diploid WF model or a dioe-
cious diploid Moran model, for which the deterministic forces of
selection and/or mutation are stronger than the stochastic genetic
drift. In more detail, the allele frequency dynamics in Norman's
paper is dominated by a deterministic function that solves an
ordinary differential equation according to Haldane's theory (see
for instance Chapter 4 of Cavalli-Sforza and Bodmer, 1971). The
random fluctuations around this deterministic allele frequency
curve are smaller, but in contrast to our results, they occur on the
same time scale as the variations of the deterministic curve. These
stochastic fluctuations are described by a Gaussian diffusion in the
limit of large populations. Norman's results are formulated
mathematically in a more general setting though, and we will
apply them to the genotype frequency process of the monoecious
and diploid Moran model, in order to prove its weak convergence
on both time scales simultaneously.

An implication of our results is that the fixation index fIS of
Wright (1943) oscillates around a stable fixed point that is only a
function of the selfing probability. These oscillations constitute an
OU process for the Moran model and an autoregressive process for
the WF model. Both these processes have a marginal normal dis-
tribution, whose variance and bias are larger for the Moran than
for the WF model.

Our paper is organized as follows. We first define the diploid
Moran model in Section 2 in terms of a Markov chain. In Section 3
we define some important statistics, such as the expected hetero-
zygosity, effective population size and fixation index. The diffusion
approximation of the Moran model is introduced in Section 4, and
its continuous time version in Section 5. In Section 6 we introduce
more briefly the diploid WF model, and derive its diffusion
approximation. Simulation results are presented in Section 7, and
extensions are discussed in Section 8. The mathematical derivations
have been collected in the appendix.

2. Formulation of monoecious diploid Moran model

We consider one locus and assume two versions or alleles A
and a of the gamete. Moran (1958a) noted that a model with
overlapping generations, where only one individual is replaced at

each instant can be formulated in discrete or continuous time. We
will mainly focus on the discrete version, and briefly mention the
continuous time extension in Section 5. Time t¼0 represents the
founder generation, and the composition of the founder popula-
tion is given. The constant number of diploid and monoecious
individuals is n. We take into account the probability s of self-
fertilization.

The Markov chain for the discrete time diploid Moran model
starts with a given founder population. At each of the following
time steps ðt ¼ 1;2;‥Þwe work with a probability distribution over
all possible populations. In an input (parental) population (time
step t) there are nðtÞ

1 ¼ n1 individuals of genotype AA, nðtÞ
2 ¼ n2

genotypes of type Aa, and nðtÞ
3 ¼ n3 individuals of genotype aa. The

total number of input individuals is n¼ n1þn2þn3. In each output
population there are ~n1 ¼ nðtþ1Þ

1 individuals of genotype AA, ~n2 ¼
nðtþ1Þ
2 individuals of genotype Aa, and ~n3 ¼ nðtþ1Þ

3 individuals of
genotype aa. We will not call the output population an offspring
population, because there is just one new member appearing at
each time step t. It is assumed that the total number of diploid
individuals n remains constant for all t, although extensions to a
variable population size are discussed in Section 8. This implies in
particular that ~n1þ ~n2þ ~n2 ¼ n.

At each time step t we first pick one mating individual at
random, for reproduction. After that, we pick one more mating
individual, with probability s for self-fertilization. These two
mating individuals produce an offspring individual, which is put
aside for a moment. We can say that the newly formed offspring
individual is in exile, temporarily. The next step is that we select
one individual at random for removal from the genotype pool. The
last thing we do, is to bring the offspring individual in from its
exile and put it into the genotype pool to replace the removed
individual.

Each time step t thus comprises four substeps: (i) the random
picking of two diploid parental individuals, one after the other,
with a given probability for self-mating. These parental individuals
are put back into the genotype pool after their mating. (ii) The
formation of one offspring individual, by combining two haploid
gametes at random from the parental individuals. This single
newly formed diploid offspring individual is put temporarily into
exile. (iii) The random removal of one diploid individual from the
genotype pool. (iv) The waiting offspring individual is put into the
genotype pool, where it replaces the individual that has been
eliminated.

The net effect during one time step is that one diploid indivi-
dual dies and is replaced by one newly composed individual. This
new genotype is composed through random mating in the full
genotype pool, including the one that will soon be picked to die
and be replaced by the newly composed one. This is an important
distinction. The formation of the offspring takes place before an
individual is removed from the genotype pool. A different type of
Moran model could be constructed if one assumed the reverse
order of removal and replication. A stronger genetic drift would
result if the dying individual had been excluded from having
offspring.

The present model will not take mutation and selection into
account, but it could be modified to do so. A probability s of self-
fertilization is taken into account though. The case s¼ 1=n is of
particular interest because it lets the mating take place in a
gamete pool instead of in a genuine genotype pool. It is thus a
reference case which can be called standard self-fertilization,
where the diploid model effectively degenerates into a haploid
model where the heterozygosity is no longer an essential property,
since no heterozygosity can be identified in a haploid gamete pool.
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