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H I G H L I G H T S

� We define a realistic Ebola model that does not rely on homogeneous mixing.
� We reproduce the dynamics of the 2014–2015 Ebola outbreak in Liberia.
� We model non-ideal and time-varying intervention policies.
� We assess the efficacy intervention policies with respect to their application time.
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a b s t r a c t

The availability of accurate models for the spreading of infectious diseases has opened a new era in
management and containment of epidemics. Models are extensively used to plan for and execute vac-
cination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and
to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the
Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions
in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to
describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the sim-
plifying assumption of homogeneous mixing, which is central to most of the mathematically tractable
models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other,
and its network of contacts varies in time as a function of an activity potential. Our model contemplates
the possibility of non-ideal and time-varying intervention policies, which are critical to accurately
describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-
to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD
in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current
vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is
also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular,
we show that an earlier application of the same intervention policy would have greatly reduced the
number of EVD cases, the duration of the outbreak, and the infrastructures needed for the imple-
mentation of the intervention.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of Ebola viruses in 1976, the 2014–2015
outbreak of the Ebola Virus Disease (EVD) has been the largest in
terms of number of countries involved, reported cases, and

casualties. As of December 13, 2015 the Centers for Disease Control
and Prevention (CDC) have reported more than 28,600 cases in six
West African countries, of which about 15,200 have been labora-
tory confirmed, totaling more than 11,300 casualties (Centers for
Disease Control and Prevention, 2014a). Outside of these regions,
one case has been reported in Spain, one in the United Kingdom,
and four in the United States of America, one of which has resulted
in a casualty (Centers for Disease Control and Prevention, 2014b).
While massive interventions are currently underway in afflicted
countries, unaffected countries worldwide are striving to
strengthen their preparedness and response plans through clinical
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and non-clinical interventions (Centers for Disease Control and
Prevention, 2014c). In this context, mathematical modeling of
infectious disease spreading can provide paramount information
on the progression of EVD and on short/long-term outcomes of the
epidemics. At the same time, policy makers could benefit from
quantitative and qualitative information afforded by such mathe-
matical models that directly assess the effectiveness of interven-
tion policies (Keeling and Eames, 2005; Legrand et al., 2007;
Brauer and Castillo-Chavez, 2011; Keeling and Rohani, 2011;
Althaus, 2014; Fisman et al., 2014; Gomes et al., 2014; Meltzer et
al., 2014; Nishiura and Chowell, 2014; Rivers et al., 2014; Towers et
al., 2014; Merler et al., 2015; Valdez et al., 2015; Webb et al., 2015).

As in the study of many other infectious diseases (Keeling and
Eames, 2005; Brauer and Castillo-Chavez, 2011; Keeling and Rohani,
2011), modeling efforts on EVD have mainly focused on mean-field
compartmental models, either deterministic or stochastic, and agent-
based models (Chowell et al., 2004; Althaus, 2014; CDC Stacks, 2014;
Fasina et al., 2014; Fisman et al., 2014; Gomes et al., 2014; Kiskowski,
2014; Lewnard et al., 2014; Meltzer et al., 2014; Nishiura and Cho-
well, 2014; Pandey et al., 2014; Poletto et al., 2014; Rivers et al., 2014;
Towers et al., 2014; Merler et al., 2015; Valdez et al., 2015; Webb et
al., 2015). Although these models are valuable tools for simulation
and prediction of EVD scenarios, they suffer from limitations that
reduce their capability to accurately-and-quickly assess the effec-
tiveness of specific intervention policies and pathways for their
improvement.

Mean-field compartmental models are based on deterministic or
stochastic differential equations, in which relevant variables, called
compartments, evolve in time to describe the fraction of the popu-
lation in a given state of the epidemic model (Brauer and Castillo-
Chavez, 2011; Keeling and Rohani, 2011). Several mean-field com-
partmental models have been recently formulated to describe the
spreading of EVD and assess the impact of non-pharmaceutical
interventions (Chowell et al., 2004; Althaus, 2014; CDC Stacks,
2014; Fasina et al., 2014; Fisman et al., 2014; Kiskowski, 2014; Lew-
nard et al., 2014; Meltzer et al., 2014; Nishiura and Chowell, 2014;
Pandey et al., 2014; Rivers et al., 2014; Towers et al., 2014; Webb et
al., 2015). These models are usually calibrated through least-squares
optimization on available epidemic data (World Health Organization,
2014a). Then, several instances of the model are studied, varying one
or more parameters, to anticipate plausible scenarios for the evolu-
tion of the outbreak in terms of the total number of infections and
casualties.

Mean-field approximations are effective to enable a first,
mathematically rigorous understanding of EVD spreading, but
suffer from several limitations. While these models are computa-
tionally simple and theoretically tractable, they do not take into
account the inherently time-varying nature of human behavior,
which is influenced by several factors, such as health status or risk
perception (Ferguson, 2007; Funk et al., 2010; Manfredi and
D'Onofrio, 2013). In their basic incarnation, they rely on the
assumption of homogeneous mixing, whereby each individual
contacts every other. This assumption typically yields an over-
estimation of cases (Lewnard et al., 2014; Merler et al., 2015), since
social interactions in populations are heterogeneous in both
number and intensity (Barrat et al., 2008; Holme and Saramäki,
2012; Perra and Goncalves, 2015). Although heterogeneities
could be included by refining and increasing the spectrum of
compartments (Brauer, 2008; Choe and Lee, 2015), such an
approach may challenge rigorous analytical treatment and para-
meter identification.

On the opposite side of the spectrum from mean-field compart-
mental models in terms of complexity are agent-based models. These
models are based on the stochastic simulation of individuals' motion
and interaction, following specific rules, spatial constraints, and
mobility patterns (Ajelli et al., 2010). A comprehensive agent-based

model for worldwide simulation, the Global Epidemic and Mobility
Model (GLEAMviz) (van den Broeck et al., 2011), has been used to
assess the international spreading risk associated with the 2014 EVD
outbreak, taking into account several realistic factors that influence
the spreading (Gomes et al., 2014; Poletto et al., 2014). A detailed
agent-based model, accounting for the spatial distribution of
households and hospitals, geographic, and demographic information,
and mobility patterns of individuals, has been presented in Merler
et al. (2015) to assess the effectiveness of non-pharmaceutical
intervention in Liberia. Agent-based models are very refined, but
they provide valuable information only in extensive simulation
campaigns with a deep knowledge of human behavior, and they are
not amenable to analytical treatment.

The typical time scales of the progress of infectious diseases
and the present lifestyle, with fast and frequent national and
international travels, suggest that homogeneous mixing should be
overcome in favor of approaches that explicitly account for the
concurrent evolution of the dynamics of infectious diseases and
formation of the network of contacts. Activity driven networks
(ADNs) have been recently introduced to describe contact pro-
cesses that evolve over time-varying networks (Perra et al., 2012),
when timing and duration of connections happen over short time
scales (Morris and Kretzschmar, 1997; Moody, 2002; Ghoshal and
Holme, 2006; Butts, 2009; Holme and Saramäki, 2012), compar-
able with the dynamics of the process running on the network
nodes. This modeling paradigm contrasts that of traditional
connectivity-driven networks, where links between nodes have a
long life span (Centola et al., 2007; Volz and Meyers, 2008;
Schwartz and Shaw, 2010; Shaw and Schwartz, 2010; Jolad et al.,
2012), resulting in the separation between the time scales of the
dynamics of the network connections and the process evolution.

ADNs have been successfully used to study disease spreading in
susceptible–infected–susceptible (SIS) and susceptible–infected–
removed (SIR) models (Liu et al., 2014). Through a heterogeneous
mean-field approach (Perra et al., 2012; Liu et al., 2014), spreading
and immunization thresholds have been computed. These thresholds
have been found to be considerably different from those computed
on static networks, highlighting the need for more in-depth studies
of epidemics on time-varying networks. ADNs can thus afford the
possibility of formulating mathematically tractable, yet accurate,
models of epidemic spreading, which overcome key limitations of
mean-field compartmental and agent-based models. However,
research on ADNs is in its infancy, and many efforts are currently
under way to advance this field of investigation (Medus and Dorso,
2014; Rizzo et al., 2014; Sousa da Mata and Pastor-Satorras, 2015;
Starnini and Pastor-Satorras, 2014; Sun et al., 2014). Toward a more
realistic treatment of human factors, in Rizzo et al. (2014), we have
studied the effect of individual behavior on the spreading of the
epidemic in an SIS process. In particular, we have considered reduced
activity of infected individuals, due to quarantine or to their debili-
tating health status, and self-protective behavior of healthy indivi-
duals on the basis of their risk perception. In Sun et al. (2014), the
effect of memory phenomena on the epidemic threshold of SIS and
SIR processes has been studied. These efforts have focused on
hypothetical epidemic processes, and the validation of ADN models
against real epidemic data is currently untapped.

In this paper, we formulate an ADN-based mathematical model of
the 2014–2015 EVD outbreak in Liberia. The motivation for the
selection of ADNs to model EVD is twofold. First, the incubation time
of EVD, with a minimum of 2 and a maximum of 21 days (World
Health Organization, 2014b), is compatible with the time scale of
individual mobility patterns (González et al., 2008; Poletto et al.,
2013). This implies that time-scale separation assumptions may yield
incorrect predictions on the spread of the epidemic (Merler et al.,
2015). Second, ADNs can be adapted to account for realistic phe-
nomena that may be critical to the assessment of the severity and
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