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H I G H L I G H T S

� I consider an analytically highly tractable model for the evolution of dispersal under contrasting levels of kin competition.
� I use both adaptive dynamics and an inclusive fitness approach.
� Dispersal may evolve to an ESS or undergo evolutionary branching, but it always has an evolutionarily stable dimorphic attractor.
� The model exhibits unprotected dimorphisms and loss of diversity via a catastrophic bifurcation.
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a b s t r a c t

In fragmented but temporally stable landscapes, kin competition selects for dispersal when habitat
patches are small, whereas the loss of dispersal is favoured when dispersal is costly and local populations
are large enough for kin interactions to be negligible. In heterogeneous landscapes with both small and
large patches, contrasting levels of kin competition facilitate the coexistence of low-dispersal and high-
dispersal strategies. In this paper, I use both adaptive dynamics and inclusive fitness to analyse the
evolution of dispersal in a simple model assuming that each patch supports either a single individual or a
large population. With this assumption, many results can be obtained analytically. If the fraction of
individuals living in small patches is below a threshold, then evolutionary branching yields two coex-
isting dispersal strategies. An attracting and evolutionarily stable dimorphism always exists (also when
the monomorphic population does not have a branching point), and contains a strategy with zero dis-
persal and a strategy with dispersal probability between one half and the ESS of the classic Hamilton–
May model. The present model features surprisingly rich population dynamics with multiple equilibria
and unprotected dimorphisms, but the evolutionarily stable dimorphism is always protected.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In a landmark paper, Hamilton and May (1977) showed that kin
competition can maintain dispersal in stable habitats. The simplest
version of their model assumes that the habitat consists of many
small sites, each supporting just one adult individual. All offspring
born in a site are therefore siblings, and the offspring who remain
in their natal site kill their own siblings when they compete for
establishment. Dispersal can be seen as an altruistic act; the dis-
persed offspring accept the cost of dispersal, such as the associated
mortality risk, in order to save their siblings (Taylor, 1988; Ronce,
2007). If the habitat consists of larger patches that can support
more than one adult, then the offspring are not all relatives and

therefore kin competition weakens, resulting in less dispersal
(Comins et al., 1980; Taylor, 1988; Ajar, 2003).

In natural habitats, the size of habitat patches is likely variable.
Since differently sized patches select for different levels of dis-
persal, variable patch size offers an attractively economical
explanation for the evolution of dispersal polymorphisms. The
expectation that variable patch size can select for the diversifica-
tion of dispersal strategies was shown to be correct by Massol et al.
(2011), who found evolutionary branching of dispersal when patch
size is distributed with positive skew. The model of Massol et al.
(2011) excels at combining analytical results with biological rea-
lism (and indeed they demonstrate that their condition for evo-
lutionary branching is satisfied in several natural systems), but is
relatively technical.

In this paper, I propose a simpler model to demonstrate evolu-
tionary branching and to explore the joint evolution of coexisting
dispersal strategies under contrasting levels of kin competition. The
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advantage of the present model is threefold. First, it is a direct
extension of the Hamilton–May model, and hence easier compar-
able to the classic results than the continuous-time model of Massol
et al. (2011; see Section 6 for details). Second, the analysis is carried
beyond evolutionary branching, i.e., I investigate how two dispersal
strategies coevolve. For some dimorphisms, I find multiple popu-
lation dynamic equilibria such that the dimorphism is not protected
and can be lost without warning, through a catastrophic bifurcation,
when an environmental change induces changes in the model
parameters. Third, the simplicity of the present model makes it
analytically highly tractable.

In the first part of the paper, I obtain simple formulas for the
invasion boundaries of pairwise invasibility plots (Geritz et al.,
1998), for the evolutionarily singular strategies and their bifurca-
tions, and also for the evolutionarily stable dimorphisms. The
adaptive dynamics of this model can be analysed with simple
mathematics to an almost unprecedented degree. In the second
part, I use the inclusive fitness approach to obtain the mono-
morphic and dimorphic singularities and their convergence sta-
bility in a highly intuitive way (Section 7 can be read directly after
the model description). I also extend the inclusive fitness approach
to derive the condition for evolutionary stability (Section 8).
Although the latter is technically more cumbersome, it shows
explicitly how contrasting habitat sizes facilitate evolutionary
branching via spatial sorting of dispersal strategies.

2. The model

I consider a population of an annual organism where juveniles
compete for breeding sites. A fraction p of the breeding sites are
solitary sites, whereas the remaining fraction 1�p of the sites
form one large, well mixed patch, where all juveniles compete
equally for all sites. The life cycle consists of reproduction, dis-
persal, and competition. At reproduction, each breeding site is
occupied by one adult, who produces C offspring and dies. I
assume C-1 so that the dynamics is deterministic within each
site. A fraction d of the offspring is dispersed and the remaining
fraction 1�d remains in the natal site. Dispersed offspring survive
dispersal with probability s and land either in a solitary site with
probability p or in the large patch with probability 1�p. Hence I
assume that immigration is simply proportional to the area cov-
ered by the breeding sites, so that the model has no inherent
source–sink structure (this is different from the model of Massol
et al. (2011), who assumed that each location receives the same
number of immigrants irrespectively of its carrying capacity). After
dispersal, juveniles compete for a breeding site according to a fair
lottery. Kin competition within solitary sites selects for dispersal
(Hamilton and May, 1977), whereas kin competition vanishes in
the large patch and dispersal is selected against due to the mor-
tality cost associated with it.

Suppose that L dispersal strategies coexist in the population
(later I shall focus on L¼1 and L¼2). Let dk denote the fraction of
offspring dispersed by strategy k (k¼ 1;…; L), let n1kðtÞ be the
fraction of all breeding sites that is solitary and is occupied by an
adult of strategy k in generation t (

PL
k ¼ 1 n1kðtÞ ¼ p), and let n2kðtÞ

be the fraction of all sites that is in the large patch and is occupied
by strategy k (

PL
k ¼ 1 n2kðtÞ ¼ 1�p).

In order to describe the population dynamics concisely, I start
with defining three quantities that will play the role of the
environmental feedback variables (Metz et al., 1992; Diekmann et
al., 2001; see below). The first environmental feedback variable is

E1 ¼ s
X
k

ðn1kþn2kÞ dk ð1aÞ

so that E1C is the number of immigrants per site. If a solitary site

was occupied by an adult of strategy i, then the site is won by one
of the adult's non-dispersed offspring with probability

1�di
1�diþE1

:

The second environmental feedback variable is

E2 ¼
1�pP

kn2kð1�dkÞþð1�pÞE1
ð1bÞ

so that E2=C is the probability that a specific juvenile secures a
breeding site if it is competing in the large patch. To interpret this
quantity, note that all juveniles in the large patch compete for ð1
�pÞN sites (where N is the total number of breeding sites),

P
kn2k

NCð1�dkÞ is the number of non-dispersed offspring produced in
the large patch and ð1�pÞNE1C is the number of immigrants into
the large patch (this is ð1�pÞN times what a solitary site receives
because the large patch covers ð1�pÞN times the area of a single
site). The probability of success is the number of sites divided with
the number of competitors. Finally, the third environmental
feedback variable is defined as

E3 ¼
X
k

n1k

p
� 1
1�dkþE1

ð1cÞ

so that E3=C is the probability that a specific immigrant offspring
who landed in a solitary site wins the site. Here n1k=p is the
probability of landing in a site occupied by an adult of strategy k
conditioned on landing in a solitary site, and ð1�dkþE1ÞC is the
number of competitors within the site.

Let D denote an arbitrary dispersal strategy (either one of the
coexisting L strategies or a new mutant) and let the vector mðtÞ ¼
ðm1ðtÞ;m2ðtÞÞT be the population vector of this strategy, containing
the fraction of all sites that are occupied with an adult of this
strategy and are solitary (m1) or in the large patch (m2). Hence if D
stands for the kth strategy present in the resident population, then
D¼ dk and m¼ ðn1k;n2kÞT . The projection matrix A, which deter-
mines the population vector in the next generation according to
mðtþ1Þ ¼AmðtÞ, is given by

A¼
1�D

1�DþE1
þDspE3 DspE3

Dsð1�pÞE2 ð1�DþDsð1�pÞÞE2

2
64

3
75 ð2Þ

Here the element A11 is the number of solitary sites won by the
offspring of a parent currently in a solitary site, given by the sum
of the probability that a solitary site is won by a non-dispersed
offspring (first term of A11) and the number of offspring dispersed
from a solitary site who survive dispersal, land in a solitary site,
and win that site (second term of A11). A12 is the number of off-
spring dispersed from a site in the large patch who survive dis-
persal, land in a solitary site, and win that site. Similarly, A21 is the
number of offspring dispersed from a solitary site who survive
dispersal, land in the large patch, and secure a site in the large
patch. Finally, A22 is the number of offspring born in a site of the
large patch who either did not disperse or survived dispersal and
landed back in the large patch, times the probability of securing a
site in the large patch.

Notice that the elements of A are not constants because the
environmental feedback variables E1; E2; E3 depend on the vari-
ables nik(t). However, all non-linearities in the population
dynamics act through the environmental feedback variables, i.e.,
the three environmental feedback variables fully describe all biotic
interactions between an individual and the resident population
(Metz et al., 1992; Diekmann et al., 2001). When the resident
population has equilibrated so that the densities nik are constants,
then the dynamics of a mutant is linear as long as its own density
is negligible.
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