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H I G H L I G H T S

� Dynamics of frequency of cooperation is sensitive to the initial conditions.
� Frequency of cooperation could not be adopted by simply averaging.
� Spatial prisoner's dilemma game is chaos.
� Procedure is applicable to other deterministic spatial models therein.
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a b s t r a c t

The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely
deterministic strategies and no memories among players is investigated in this paper. Based on the
statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its
macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant
property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic
dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its
subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by
simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the
chaotically changing spatial patterns via empirical observations can be defined and justified in view of
symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to
other deterministic spatial evolutionary games therein.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary game theory has been considered an important
approach to characterizing and understanding the evolution of
cooperation in many settings of ecology, infectious disease
dynamics, animal behaviors and social interactions of humans
(Maynard and Price, 1973; Maynard, 1982; May and Leonard, 1975;
Bshary et al., 2008; Nowak and May, 1994; Nowak and Sigmund,
2004a; Nowak et al., 2002; Nowak and Sigmund, 2005; Axelrod
and Hamilton, 1981). The traditional methodological perspective
to evolutionary game theory is based on the deterministic
dynamics and the replicator equation in infinitely large, well-
mixed populations (Hofbauer and Sigmund, 1988, 2003). Both in

animal and human societies, only a limited number of individuals
are interacted with each other (Bin et al., 2010). Therefore, the
spatial version of evolutionary games taking place on networks is
proposed to comprehend the evolutionary dynamics and provide
better explanations for the emergence of cooperation (Nowak and
May, 1992; Nakamaru et al., 1997; Hauert and Doebeli, 2004;
Hauert and Imhof, 2012).

Since the groundwork on repeated games by Axelrod and Dion
(1988), the evolutionary prisoner's dilemma game as a general
metaphor for studying the cooperative behavior has drawn much
attention in both theoretical and experimental studies (Rapoport
and Chaammah, 1965; Fudenberg and Maskin, 1990; Nowak and
Sigmund, 1993; Boerlijst et al., 1997). A spatial prisoner's dilemma
game (SPDG) on a square lattice consisting of a two-state cellular
automata was first reported in (Nowak and May, 1992). Subse-
quently, a series of investigations of SPDG on regular lattices and
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graphs are quickly rose to prominence, particularly in the manner
of cellular automata (Nowak and Sigmund, 1993; Mar and Denis,
1993; Sigmund, 1994; Grim, 1995, 1996; Pereira et al., 2008a,
2008b; Marcelo and Alexandre, 2010; Schimit et al., 2015). Many
interests have also been given to the effects of spatial structures,
such as small-world networks, scale-free networks, inter-
dependent networks, dynamical networks, hierarchical networks,
coevolutionary networks, networks of networks, etc (Lieberman
et al., 2005; Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006b;
Taylor et al., 2007; Cao and Li, 2008; Fu et al., 2009; Li and Cao,
2009; Ohtsuki et al., 2007a; Perc and Wang, 2010; Wang et al.,
2011; Antal et al., 2009b; Tarnita et al., 2009a; Wu et al., 2010;
Changbing et al., 2012). Due to the enormous number of possible
configurations, the asymptotic behaviors and the crucial quantity
(frequency of cooperation) of this game for various parameter
values are widely adopted by averaging over several steps after the
game reaches the equilibrium state, and inferred almost entirely
based on exhaustive computer simulations. The long-term time-
asymptotic dynamics of frequency of cooperation studied in this
work, however, is very sensitive to the initial conditions, rendering
long-term prediction impossible in general. Meanwhile, the
rigorous analysis of chaotically changing spatial patterns never-
theless is missed in the framework of symbolic dynamics. None-
theless, it has been well recognized that network topologies can
play a crucial role in the evolution of cooperation, in addition to
the payoff matrix and the update mechanisms. It is worth men-
tioning that Press and Dyson have fundamentally and dramatically
changed our understanding of this classic game byuncovering
a new class of strategies, so-called “zero-determinant” strategies,
which open a range of new possibilities for the study of coop-
eration (Press and Dyson, 2012; Adami and Hintze, 2012; Hilbe
et al., 2013).

In the traditional SPDG, there are two strategic types of indivi-
duals: cooperator (C) and defector (D). If both players choose C, both
get a payoff of magnitude R; if one defects while the other cooperates,
D gets the game's biggest payoff, T, while C gets S; if both defects,
both get P. This can be formalized in the form of a payoff matrix

C D

C R S

D T P:
ð1Þ

To be interesting, the game is characterized by the payoff ranking
T4R4P4S, which guarantees that the Nash equilibrium of the
game is mutual defection. For repeated games, the additional
requirement 2R4TþS ensures that mutual cooperation is the
globally best outcome. The “conventional value” ðT ;R; P; SÞ ¼ ðb;1;0;
0Þ is chosen in this literature; the essentials of the game are pre-
served in the sense that none of our findings and proofs are quan-
titatively altered, if the parameter P is instead set as P ¼ εo0:001 (so
that T4R4P4S is strictly satisfied). The parameter b ðb41Þ, which
represents the advantage of defectors against cooperators, is there-
fore the only parameter in the model.

In this work, we apply SPDG on a two-dimensional infinitely
large regular lattice with Moore neighborhood, purely determi-
nistic strategies, and no memories among players. Essentially, this
simple and purely deterministic SPDG is an example of two-
dimensional cellular automata (2D CAs) with two states and the
neighborhood structure consisting of the two closest cells in each
direction, for a total of 25 cells. Based on the heuristic analysis of
frequency of cooperation, it is interesting to note that the mac-
roscopic behaviors of this game are very sensitive to the initial
conditions, which is the most practically significant property of
chaos. According to the formal characterization of the notat-
ion of chaos, chaos means deterministic behaviors that are very
sensitive to the initial conditions. In other words, infinitesimal

perturbations of initial conditions for a chaotic dynamical system
lead to large variations in behavior. Recently, chaotic phenomena
of Chua's Bernoulli-shift rules with distinct parameters have been
rigorously and thoroughly interpreted under the framework of
symbolic dynamics (Jin et al., 2010; Chen et al., 2009; Chua and
Pazienza, 2010a, 2010b). These analytical assertions shed light on
the importance of gliders–a glider is a periodic structure moving
into the evolution space, and essentially a subshift in view of
symbolic dynamics (for formal definition see Jin et al., 2014; Jin
and Chen, 2014; Cattaneo et al., 2000; Gianpiero and Luciano,
1998). The purpose of this paper is to provide the rigorous and
firm explanations for three pivotal features of frequency of coop-
eration via mathematical analysis, such as topological entropy and
topologically mixing.

Findings discussed in the preceding references are based on
computational experiments with lace doily, rose window and
Persian carpet, as well as gliders (mobile localizations) in this
game. This paper is not to report expressions or discoveries of
gliders, but devoted to illustrating nonlinear explanations for the
experimental simulations of frequency of cooperation via an ana-
lytical method in the framework of symbolic dynamics, which
demonstrates the underlying chaos of the extant gliders and their
combinations in a subtle way. To enhance clarity and convenience,
this work is concerned exclusively with three canonical gliders of
this game with temptation-to-defect parameter b¼1.66, denoted
by g1–g3, and their combinations. From the viewpoint of 2D
symbolic dynamics, their chaotic dynamical properties are
detailed analyzed, such as topological entropy and topologically
mixing, and some quantitative explanations of their intrinsic
complexity, the chaotically changing spatial patterns, and the
indefinitely fluctuating proportion of cooperators are obtained.

2. Macroscopic properties

Basically, a cellular automata consists of the configuration
space and local rules (Neumann and Burks, 1996; Wolfram, 2002).
A 2D cellular automata is a two-dimensional array of identical
automata (the cells), where each cell takes one of the values of 0 or
1. Each cell of the array is simultaneously updated to evolve a new
state which is determined by the local rules. Consider SPDG played
on the regular lattice with strategies C and D, denoted by 0 and 1,
respectively, and periodic boundary conditions. Then, the agents in
this game simultaneously play SPDG with their network neighbors
consisting of the eight cells surrounding a central cell on a two-
dimensional square lattice, and get payoffs according to the payoff
matrix (1). The total payoff for each agent is the sum of all payoffs
in these encounters with neighbors. Each player then mimic his
neighbor's strategy with certainty by comparing his payoff in this
step with his neighbors’ payoffs. Therefore, the state of each cell at
time t depends on 25 cells in its neighborhood at time t�1, a total
of 225 possible patterns or local rules. As an illustration, one local
rule is exhibited in Fig. 1.

The key quantity for characterizing the macroscopic behaviors
of this system is the density of cooperators, fc, which is widely
adopted by averaging over several steps after the game reaches the
equilibrium state. The conclusions of fc reported in the previous
literatures are always conducted as a function of b by averaging
over some different random initial states. Note that a network
with larger size will decrease the ensemble error. Consequently,
the simulations are frequently performed with the population size
of more than N¼ 100� 100. Here, the long-term time-asymptotic
behaviors of fc over discrete-time steps, denoted by fc(t), are
explored with b¼1.66, and the network size of N¼ 100� 100 and
N¼ 200� 200, as shown in Fig. 2. Samples of our experimental
simulations are serially extracted from fc(t) after 106 generations,
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