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H I G H L I G H T S

� We developed a novel framework to analyze disease elimination and re-emergence.
� We provide a simulation free method to determine if disease elimination is possible.
� We model measles eliminations and re-emergences in Iceland from 1924 to 1938.
� Iceland was likely to experience a measles re-emergence shortly after October 1927.
� Undocumented measles re-emergences in Iceland were unlikely from 1930 to 1936.
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a b s t r a c t

Traditional differential equation models of disease transmission are often used to predict disease tra-
jectories and evaluate the effectiveness of alternative intervention strategies. However, such models
cannot account explicitly for probabilistic events, such as those that dominate dynamics when disease
prevalence is low during the elimination and re-emergence phases of an outbreak. To account for the
dynamics at low prevalence, i.e. the elimination and risk of disease re-emergence, without the added
analytical and computational complexity of a stochastic model, we develop a novel application of control
theory. We apply our approach to analyze historical data of measles elimination and re-emergence in
Iceland from 1923 to 1938, predicting the temporal trajectory of local measles elimination and re-emerge
as a result of disease migration from Copenhagen, Denmark.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ultimate goal of public health is the eradication of disease.
A major challenge to this goal is that even when disease elim-
ination can be achieved in a local population, there often remains
a risk of re-emergence from other locations. Differential equation
models have been employed to predict the trajectories of out-
breaks and to evaluate the effectiveness of public health policies
targeting disease elimination (Anderson et al., 1992; Hethcote and
Van den Driessche, 2000; Keeling and Rohani, 2007). However,
differential equation models do not accurately capture the
dynamics of disease elimination and risk of re-emergence when

disease prevalence is low. Instead, arbitrary thresholds of inci-
dence have been used as a proxy for disease elimination in dif-
ferential equation models (Andrews et al., 2012; Dowdy, 2009;
Duintjer Tebbens et al., 2014; Maude et al., 2012; Silal et al., 2014;
White et al., 2009). Alternatively, stochastic models have been
adopted to accurately incorporate disease dynamics at low pre-
valence (Keeling and Rohani, 2007). However, stochastic models
are significantly more computationally, analytically, and con-
ceptually challenging (Dimitrov and Meyers, 2010).

Here we propose applying control theory (Brogliato et al., 2007;
Doyle et al., 2009; Kailath, 1980; Luenberger, 1979) to model the
elimination and re-emergence of an infectious disease. Typically, a
control theory model combines differential equations that repre-
sent the state of the system with external factors that impact the
system. Following this approach, we modeled the transmission of
infection in a community at risk for re-emergence from sur-
rounding communities. From our model, we determined para-
meter conditions for the elimination of an outbreak, and forecast
the times until elimination and re-emergence. We used time series
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data of measles elimination and re-emergence events in Iceland to
illustrate the application of our model.

2. The control theory model

To model the elimination and re-emergence of infection in a
community, we developed a control system of the form

dx
dt

¼ f x;σð Þ;

where the output variables x tð ÞARn capture the state and evolu-
tion of the system, and the input variables σ tð ÞARm influence the
evolution of the output variables, but are not themselves impacted
by the state variables. In our model, the output variables x corre-
spond to the state of an outbreak within a community, and the
input variables σ are the external factors that impact re-
emergence from other communities.

2.1. The local transmission of infection

We considered a population divided into the proportion of
people susceptible ðsÞ, infected ðiÞ and recovered ðrÞ, with
sþ iþr¼ 1, which follow a standard SIR-type model:

ds
dt

¼ b�λs�bs;

di
dt

¼ λs�γi�bi;

r¼ 1�s� i; ð1Þ
where λ is the force of infection, γ is the recovery rate, and b is the
rate of demographic turnover (i.e. b is both the per capita birth
rate and the per capita death rate).

In SIR-type models there are many possible reasons for
choosing a nonstandard force of infection: for instance, modeling
such effects as the crowding of infected individuals, positive
measures taken by susceptible individuals to avoid infection, the
effects of behavioral changes, or disease elimination (Alexander
and Moghadas, 2005; Liu et al., 1987, 1986; Ruan and Wang, 2003;
Van den Driessche and Watmough, 2000). We consider a non-
standard force of infection (Guldberg and Waage, 1864; Hethcote
and Van den Driessche, 1991; Liu et al., 1987, 1986),

λ¼ βiα;where αZ0:

Here, λ includes an interaction coefficient α, and as a special
case, reduces to the standard mass action when the interaction
coefficient α¼ 1 (Hethcote and Van den Driessche, 2000). The
inclusion of interaction coefficient αa1 allows for nonlinearities
in contact rates that may arise due to spatial substructuring
(Bjørnstad et al., 2002). Spatial substructuring, from a region-wide
perspective could account for hot spots of measles transmissions,
such as within and between schools. In particular, if measles
transmission within a school is greater on average than other
schools, the result is spatial substructuring, and consequently
motivates the selection of αa1 (Bjørnstad et al., 2002). In addi-
tion, taking βiαs with an interaction coefficient αa1 direclty
parallels multi-order reaction kinetics from chemical reaction
theory (Savageau, 1969a, 1969b). Thereby, α can be interpreted as
the order of interaction, and controls how the rate of newly
infected (βiαs) scales with the proportion of infected i. In addition,
our formulation of λ also satisfies the basic physical principles
underlying transmission dynamics (Korobeinikov and Maini,
2005), such that transmission cannot occur in the absence of
infection ðλ 0ð Þ ¼ 0Þ and transmission increases as the proportion of
the infectious population increases dλ

diZ0
� �

.

The recovery rate γi can also be more generally assumed to be
proportional to iξ, with interaction coefficient ξ. The standard
choice ξ¼ 1 implies that the per capita rate at which people leave
the infected compartment ðγÞ is constant throughout the entire
population, in contrast to the different durations of infection that
naturally occur. Consequently, the recovery rate is taken to be:

γ ¼ ηiξ�1;with ξZ0:

The inclusion of interaction coefficient ξa1, in a similar fash-
ion to α in the force of infection, allows for nonlinearities in the
duration of infection that may arise due to the different rates at
which people recover from infection. Once again, a way to con-
ceptualize ξ is to think of schools as hot spots for measles trans-
mission. Schools that exhibit higher transmission levels, are more
likely to have a higher magnitude of exposure, which often leads
to longer recovery times. In addition, one could also conceptualize
ξ through measles transmission amongst and between similar age
groups and the potential impact of age-related effects on recovery.

2.2. The reproduction numbers

The basic reproduction number, R0, is the number of new
infections caused by a single infectious person in an otherwise
wholly susceptible population (Diekmann et al., 1990). The next-
generation method (Diekmann et al., 1990; Heffernan et al., 2005;
Liu et al., 1987; Van den Driessche and Watmough, 2002, 2000) is
a standard technique to determine the R0 for differential equation
models of disease transmission. For example, under the assump-
tion that α¼ ξ¼ 1 in system (1), the next-generation method
linearizes the flow of newly infected people, F ¼ βis, and the flow
from the infected compartments V ¼ ηiþbi, at the disease-free
equilibrium E0 ¼ s¼ 1; i¼ 0; r¼ 0:

F ¼ d
di
F jE0 ¼ β and V ¼ d

di
V E0 ¼ ηþb
��

The next-generation matrix is the rate of production of new
infected F ¼ β, multiplied by the duration of infection V �1 ¼ 1

ηþb,

giving G¼ β
ηþb. In general, the R0 is then the largest eigenvalue of

G, but since G here is scalar, R0 ¼ β
ηþb.

However, system (1) is not linearizable (i.e. differentiable) at
i¼ 0 when αo1 or ξo1, so the standard next-generation method
cannot be used directly. Instead, since there is only one infected
compartment, we can directly compute the effective reproduction
number:

Re i; sð Þ ¼F
V ¼ βiαs

ηiξþbi
¼ βiα�1s

ηiξ�1þb

and the basic reproduction number:

R0 ¼ Re i; sð Þj s ¼ 1 ¼
βiα−1

ηiξ−1þb
: ð2Þ

Importantly, R0 depends on i in general, unlike in the case
when the system is linearizable. The behavior of R0 can be char-
acterized by the dependency on i through the interaction coeffi-
cients. It follows that

R0 �

β
ηi
α�ξ ifξo1;

β
ηþbi

α�1 ifξ¼ 1;
β
bi
α�1 ifξ41:

8>>><
>>>:

ð3Þ

If the exponent of i in (3) is negative, transmission accelerates
as i-0þ , with R0 0ð Þ ¼1. Conversely, if the exponent of i is posi-
tive, transmission decelerates as i-0þ , and terminates at i¼ 0, i.e.
R0 0ð Þ ¼ 0. Finally, if the exponent of i is exactly 0 in (3), then 0o
R0o1 becomes constant as i-0þ (Table 1).
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