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H I G H L I G H T S

� We examine practical aspects of backward bifurcation for a model of tuberculosis.
� We identify the aspects of TB that make backward bifurcation more likely to occur.
� We consider the magnitude and sensitivity of the resulting backward bifurcations.
� Resulting bifurcations may be too small to have noticeable epidemiological impact.
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a b s t r a c t

In this work, we examine practical aspects of backward bifurcation for a data-based model of tubercu-
losis that incorporates multiple features which have previously been shown to produce backward
bifurcation (e.g. exogenous reinfection and imperfect vaccination) and new considerations such as the
treatment of latent TB infection (LTBI) and the BCG vaccine's interference with detecting LTBI. Under-
standing the interplay between these multiple factors and backward bifurcation is particularly timely
given that new diagnostic tests for LTBI detection could dramatically increase rates of both LTBI detection
and vaccination in the coming decades.

By establishing analytic thresholds for the existence of backward bifurcation, we identify those
aspects of TB's complicated pathology that make backward bifurcation more or less likely to occur. We
also examine the magnitude of the backward bifurcation produced by the model and its sensitivity to
various model parameters. We find that backward bifurcation is unlikely to occur. While increased
vaccine coverage and/or increased detection and treatment of LTBI can push the threshold for backward
bifurcation into the region of biological plausibility, the resulting bifurcations may still be too small to
have any noticeable epidemiological impact.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tuberculosis (TB) infection has been present throughout much
of human history. In fact, evidence of TB has even been found in
500,000 year-old hominin fossils (Kappelman et al., 2008). Despite
this long history and the fact that successful treatment therapies
for TB have been known for decades, it is currently estimated that
a third of the world's population is infected with TB. Tuberculosis
remains one of the three deadliest infectious diseases in the
world; HIV/AIDS, TB and malaria are often referred to as “The Big
3.” One reason for TB's stubborn persistence is the lack of an ideal
vaccine for tuberculosis. The Bacille Calmette-Guérin (BCG) vac-
cine is one of the world's safest and least expensive vaccines, but

hundreds of clinical trials have estimated its efficacy in preventing
infection everywhere from 0 to 84% (Centers for Disease Control
and Prevention, 1996; Hart and Sutherland, 1977). Complicating
matters further, BCG can interfere with the ability to detect latent
tuberculosis infection (LTBI) as vaccination can cause positive
tuberculin skin test (TST) results (used to detect LTBI) in unin-
fected individuals. Consequently, policies regarding the use of BCG
vary throughout the international community (World Health
Organization, 2004; Centers for Disease Control and Prevention,
1996; Infuso and Falzon, 2006; Gerberry and Milner, 2012) and
many countries are currently considering changes to their BCG
policies (Infuso and Falzon, 2006).

Beyond its public health impact, the unique pathogenesis of TB
has made the disease particularly interesting and rewarding to
study using mathematical models (Castillo-Chavez and Song,
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2004). One characteristic is an extended period of latency in which
the infected individual is asymptomatic and noninfectious. The
vast majority of those infected with TB will remain latently
infected for life and never develop infectious TB. However, during
this extended latent period, an individual can be reinfected with a
new external strain of the disease through a process known as
exogenous reinfection. Another complex feature of TB is that evi-
dence suggests that recovery from infectious TB can make one
more susceptible to subsequent infection (Verver et al., 2005).

One topic of particular interest to mathematical modelers of TB
has been backward bifurcation; the situation in which reducing
the basic reproductive number below 1 is not sufficient to eradi-
cate infection (Feng et al., 2000). Theoretically, this phenomenon
has been linked to several central characteristics of TB epide-
miology, including imperfect intervention strategies, incomplete
immunity, vaccination and limited treatment resources.In this
work, we investigate a mathematical model for TB based on that of
Gerberry and Milner (2012) and Gerberry (2009) that includes the
major pathogenesis of TB as well as imperfect vaccination
(through multiple modes of protection), vaccine waning, detection
and treatment of LTBI and the interference between vaccination
and LTBI treatment. In doing so, we illustrate the impact of these
characteristics on both the existence of backward bifurcation and
the magnitude of the backward bifurcation if it occurs. The results
have policy implications in the coming decades as improved
detection technologies for LTBI known as interferon-gamma
release assays (IGRAs) become more readily available (Lalvani
and Pareek, 2010; Al-Orainey, 2009; Oxlade et al., 2007). IGRAs are
more accurate than TST in detecting LTBI and are not confounded
by previous BCG vaccination. Therefore, the potential exists for
these new technologies to push TB towards eradication by dra-
matically increasing rates of both LTBI detection and vaccination.

The structure of our paper is as follows: in Section 2, we discuss
backward bifurcation and summarize the relevant literature. In
Section 3, we formulate a mathematical model for the epide-
miology of tuberculosis. In Section 5, we characterize the disease-
free equilibrium, basic reproductive number and the average
duration of infectious TB. In Section 4 we establish biologically
reasonable parameter values for the model. In Section 6, we
establish analytic conditions for the existence of backward bifur-
cation and in Section 7, we examine the magnitude of the
resulting backward bifurcation using numerical techniques.

2. Background

The basic reproductive number R0 is defined as the average
number of secondary infections caused by a single infection
introduced into a completely susceptible population. In most

compartmental models for infectious disease, R0 determines
whether an infection can persist in a population. If R041, the
average infected individual can replace their own infection as well
as contribute additional infection into the population and the
disease can invade the population. If R0o1, the average infected
individual cannot replace their own infection and the disease
consequently dies out. Mathematically, this is realized through a
forward, or supercritical, bifurcation at R0 ¼ 1 (see Fig. 1a). In this
situation, asymptotic stability is exchange between the disease-
free equilibrium (DFE), which is asymptotically stable for R0o1,
and the endemic equilibrium, which exists for R041.

For some models of infectious disease, the relationship
between R0 and the persistence of infection is more complicated.
In the situation of a backward, or subcritical, bifurcation, it is
possible for an asymptotically stable endemic equilibrium to exist
despite having R0o1: As illustrated in Fig. 1b, the asymptotic
stability of the DFE is the same (i.e. asymptotically stable for R0

o1 and unstable for R041) as with forward bifurcation. The
difference is that the endemic equilibrium that appears at R0 ¼ 1
is unstable, exists for values of R0o1 and is accompanied by a
larger asymptotically stable endemic equilibrium.

The epidemiological implications for backward bifurcation are
considerable and have been nicely described by Dushoff et al.
(1998) and Brauer (2004). Summarizing their discussions, back-
ward bifurcation is important in at least three critical ways:

� For fixed model parameters, it is possible for a disease to persist
even ifR0o1. Specifically, this occurs if the initial prevalence of
infection is greater than the prevalence at the unstable endemic
equilibrium.

� For an endemic setting in which control measures are reducing
the reproductive number, the condition that R0o1 is not suf-
ficient to eradicate the disease. Rather, the reproductive number
must be reduced beyond an eradication threshold, which we
denote Rn

0 (see Fig. 1b), in order to eliminate the disease.
� For a setting in which R0 increases across the threshold of

R0 ¼ 1, the equilibrium prevalence is discontinuous as a func-
tion of R0. As the reproductive number crosses 1 from below,
the introduction of an arbitrarily small number of infected
individuals results in an endemic equilibrium prevalence Pn40
(see Fig. 1b).

While several mechanisms have been shown to be capable of
producing the behavior, a general framework for thinking about
backward bifurcation is to consider the infectious potential of an
average infected individual, which we refer to as Patient A. In the
standard case of forward bifurcation, Patient A's infectious potential
is maximized when the rest of the population is uninfected (i.e.
Patient A's maximum infectious potential is equal to R0). If other

Fig. 1. Bifurcation curves illustrating forward and backward bifurcation at R0 ¼ 1. Solid blue lines represent asymptotically stable equilibria. Red dashed lines represent
unstable equilibria. We refer to Rn

0 as the eradication threshold and Pn as the endemic prevalence at R0 ¼ 1. (a) Forward bifurcation at R0 ¼ 1. (b) Backward bifurcation at
R0 ¼ 1. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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