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H I G H L I G H T S

� Evolutionary dynamics is given in infinite structured populations.
� The dynamics contains synergistic, linear, and discounted group interactions.
� Five classical scenarios of evolutionary outcomes are recovered by the dynamics.
� Linear spatial group interactions could not give much complexity in the dynamics.
� Synergistic group interactions are not always beneficial for cooperation.
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a b s t r a c t

The emergence of cooperation between unrelated individuals enables researchers to study how the
collective cooperative behavior survives in a world where egoists could get more short-term benefits.
The spatial multi-player games, which invoke interactions between individuals who are not directly
linked by the interactive networks, are drawing more and more attention in exploring the evolution of
cooperation. Here we address the evolutionary dynamics in infinite structured populations with
discounted, linear, and synergistic group interactions. The five classical scenarios are recovered from
the dynamics: (i) dominating defection, (ii) dominating cooperation, (iii) co-existence, (iv) bi-stability,
and (v) neutral variants. For linear interactions, the evolutionary dynamics is equivalent to that in finite
as well as the well-mixed counterparts, which can be achieved by a payoff matrix transformation, and it
illustrates that the more neighbors there are, the harder the cooperators survive. Yet both cooperation
and defection emerge easier in finite populations than in infinite for discounted and synergistic
interactions. Counterintuitively, we find that the synergistic group interactions always raise cooperators'
barriers to occupy the population with the increase of the number of neighbors in infinite structured
populations. Our results go against the common belief that synergistic interactions are necessarily
beneficial for the cooperative behavior.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The evolution of the cooperative behavior in a competitive world
ranging from multicellular organisms to human societies is an endur-
ing conundrum (Hamilton, 1963, 1964; Smith, 1964; Hardin, 1968;
Trivers, 1971; Dugatkin, 1997; Nowak, 2006a; Pennisi, 2009; Traulsen
et al., 2010; Rand and Nowak, 2013). Why should a cooperator pay a
cost to benefit another individual who may become a competitor in

the future struggle for survival? As a prominent metaphor, many types
of games (von Neumann and Morgenstern, 1944; Axelrod, 1984;
Rapoport and Chammah, 1965; Sugden, 1986; Skyrms, 2004) are
employed to deal with the problem. And some mechanisms have
been put forward successively to support the evolution of cooperation
(Hamilton, 1964; Axelrod, 2012; Nowak and May, 1992; Trivers, 1971;
Nowak and Sigmund, 1998; Traulsen and Nowak, 2006; Traulsen et al.,
2008; Nowak, 2006b). The mechanisms causing cooperation to be
facilitated over defection determine the interactive patterns of the
individuals to acquire payoffs and also the competition between them
(Nowak, 2006b; Rand and Nowak, 2013; Wu et al., 2009; Hauert et al.,
2002a; Fu et al., 2008; Wang et al., 2006; Yang et al., 2013). According
to the various interactive patterns, the frequency of different strategies
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changes over time in populations. The classical methods adopted to
capture the changes are replicator equation in infinite populations
(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998), stochastic
dynamics in finite populations (Nowak et al., 2004; Traulsen et al.,
2005), and Monte Carlo simulations in structured populations (Szabó
and Fáth, 2007; Perc and Szolnoki, 2010; Perc and Gómez-Gardeñes,
2013).

The replicator equation is a fundamental equation of evolutionary
dynamics. It depicts the frequency dependent selection assuming
implicitly infinite well-mixed populations, where strategies with
higher average payoffs become more common (Taylor and Jonker,
1978; Hofbauer and Sigmund, 1998). The structure of a well-mixed
(also can be regarded as structureless) population can be represented
by a complete graph (or network) with vertices indicating players and
edges indicating social ties (Lieberman et al., 2005; Ohtsuki et al.,
2006; Ohtsuki and Nowak, 2006). Recently, the prominent metaphors
of the one-shot, symmetric two-player dilemmas of cooperation such
as the Prisoner's Dilemma (Rapoport and Chammah, 1965), Snowdrift
Game (Sugden, 1986), and Stag Hunt Game (Skyrms, 2004) have been
extended to their N-player versions (Broom et al., 1997; Hauert et al.,
2002b; Bach et al., 2006; Zheng et al., 2007; Santos et al., 2008, 2012;
Souza et al., 2009; Gokhale and Traulsen, 2010; Pacheco et al., 2009;
Wu et al., 2013), a closer situation to the natural society, by which
researchers could investigate the collective behavior. These extensions
open the possibility for the appearance of new interior fixed points in
the replicator equation (Zheng et al., 2007; Gokhale and Traulsen,
2010; Santos et al., 2012). Furthermore, the well-mixed population
structure, an ideal case in which every player interacts with all others
in the same population at an identical probability, has also been
removed (Santos et al., 2008, 2012; Rand et al., 2011; Perc, 2011; Perc
and Gómez-Gardeñes, 2013; Li et al., 2014; Frean et al., 2013; Chen and
Wang, 2010; Liu et al., 2013).

Since the seminal work conducted by Santos et al. (2008) on
complex networks, many interesting results have been obtained on
games governed by group interactions in structured populations. Many
factors, such as group size (Szolnoki and Perc, 2011), payoff distribu-
tions (Perc, 2011), initial investments (Gao et al., 2010; Vukov et al.,
2011; Huang et al., 2015), teaching activity (Guan et al., 2007), group
reputation (Li et al., 2013), and individual expectation (Wu et al., 2012;
Li et al., 2013; Wang et al., 2014), and various heterogeneous networks
with degree correlations (Rong andWu, 2009), highly clustering (Rong
et al., 2010), and uncorrelated relations (Yang et al., 2009) receive
much attention in the context of group interactions in structured
populations (see Perc and Gómez-Gardeñes, 2013 for a more thorough
exposition). The spatial multiple interactions are more than just the
corresponding sum of pairwise interactions (Szolnoki et al., 2009; Perc
and Gómez-Gardeñes, 2013), and it invokes effective connections
between players who are not linked directly by means of the
interactive networks (Santos et al., 2008, 2012; Szolnoki et al., 2009;
Szolnoki and Perc, 2011; Li et al., 2013; Perc and Gómez-Gardeñes,
2013; Li et al., 2014; Frean et al., 2013; Débarre et al., 2014; Pinheiro et
al., 2014). With numerical simulations, Santos et al. investigate the
evolution of cooperation in finite structured populations with the N-
player snowdrift game, where the public goods are produced only
when the number of the cooperators sharing the required workload is
bigger than the minimum threshold (Santos et al., 2012). And they find
that the homogeneous population structure enhances the chances of
coordinating toward stable levels of cooperation. In finite structured
populations with group interactions, Li et al. give a rule which
determines the emergence and stabilization of cooperation theoreti-
cally (Li et al., 2014). They find that the synergistic interactions could
change the scenario in public goods games, under which the inter-
mediate number of neighbors is the worst case for the survival of
cooperators.

However, from the theoretical aspect, as individuals are
engaged in multiple interactions, how the population structure

or the number of neighbors affects the evolution of cooperation in
infinite structured populations is still unclear. Here, using pair
approximation, we investigate the evolution of cooperation in
infinite structured populations with discounted, linear, and syner-
gistic group interactions. As to the group interactions, the addi-
tional cooperators often contribute a higher efficiency than linear
increase to the real situation, such as the threshold effects and
other nonlinear interactions (Gore et al., 2009; Hauert et al., 2006;
Archetti and Scheuring, 2011, 2012; Santos et al., 2012; Souza et al.,
2009; Santos and Pacheco, 2011). We adopt discounted and
synergistic effects as an example to indicate the nonlinearity in
public goods here, considering the mathematical convenience and
the concept of synergy and discounting can be used to unify the
prisoners dilemma and snowdrift game (Hauert et al., 2006). For
the infinite structured populations, we will not be surprised if we
observe the widespread tremendous network structure in human
organizations (Skyrms and Pemantle, 2000; Jackson and Watts,
2002), scientific collaboration in researchers (Newman, 2001), and
also the movie actors (Borgatti et al., 2009; Barabási, 2002;
Barabási and Albert, 1999).

2. Evolutionary dynamics

Let us consider an infinite structured population depicted by a
regular graph with degree k, where vertices indicate individuals
and edges social ties. The framework of the public goods game
including discounting and synergy effects is adopted to capture
the discounted, linear, and synergistic group interactions (Hauert
et al., 2006; Li et al., 2014). In a group of size n with i cooperators,
the defectors and cooperators receive the following payoffs:

PDðiÞ ¼
b
n
ð1þδþδ2þ⋯þδi�1Þ ¼ b

n
1�δi

1�δ
PCðiÞ ¼ PDðiÞ�c ð1Þ
where the jth (in a general way, 1r jrn) cooperator pays a cost c
for all of the members within the same group to receive the benefit
bδj�1

=n equally while defectors pay nothing, and δ is the discount-
ing (0oδo1) and synergy (δ41) factor. As δ¼ 1, PDðiÞ ¼ bi=n, the
game reduces to the linear public goods game (Archetti and
Scheuring, 2012) with PDðiÞ ¼ rci=n, and in this case, b¼rc, where
r represents the multiplication factor of the common pool.

Different from the well-mixed population, our model allows
players to interact locally, i.e., every individual participates in only
k games organized by its neighbors and one additional game by
itself (Santos et al., 2008; Li et al., 2014). Exactly, it is not just the
sum of the corresponding pairwise interactions in terms of
players' payoffs. As to the evolutionary dynamics, the “death–
birth” (DB) process is employed to capture the update process,
where an individual in the population is randomly chosen to die at
each evolutionary step, and then all of its neighbors compete for
the vacant site proportional to their fitness (Nowak, 2006a;
Ohtsuki et al., 2006).

Using the framework of pair approximation, in every elemen-
tary step of updating, we get the expected change of the frequency
of cooperators indicated by x in infinite structured populations
with weak selection w (see Appendix A). Furthermore, we obtain
the deterministic evolutionary dynamics

_x ¼w
k�2

kðk�1Þxð1�xÞf ðxÞ ð2Þ

where

f ðxÞ ¼ ðk�2Þðδ2�1Þbδðk�2Þxx�kðkþ1Þc

þðkþ1Þδ2þ2kδþk2�1
kþ1

bδðk�2Þx
: ð3Þ
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