
Discovering short linear protein motif based on selective training
of profile hidden Markov models

Tao Song, Hong Gu n

Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

H I G H L I G H T S

� A short linear motif discovery algo-
rithm based on profile HMMs is
proposed.

� We apply a new method to deal with
the masked residues obtained by
ordered region and RLC masking.

� We adopt the selective training of
HMMs to make full use of evolution-
ary information.

� Profile HMM-based method comple-
ments the existing algorithms and
provides another way to analyze
motifs.
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a b s t r a c t

Short linear motifs (SLiMs) in proteins are relatively conservative sequence patterns within disordered
regions of proteins, typically 3–10 amino acids in length. They play an important role in mediating
protein–protein interactions. Discovering SLiMs by computational methods has attracted more and more
attention, most of which were based on regular expressions and profiles. In this paper, a de novo motif
discovery method was proposed based on profile hidden Markov models (HMMs), which can not only
provide the emission probabilities of amino acids in the defined positions of SLiMs, but also model the
undefined positions. We adopted the ordered region masking and the relative local conservation (RLC)
masking to improve the signal to noise ratio of the query sequences while applying evolutionary
weighting to make the important sequences in evolutionary process get more attention by the selective
training of profile HMMs. The experimental results show that our method and the profile-based method
returned different subsets within a SLiMs dataset, and the performance of the two approaches are
equivalent on a more realistic discovery dataset. Profile HMM-based motif discovery methods comple-
ment the existing methods and provide another way for SLiMs analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Globular domains of proteins contribute to various molecular
functions such as catalysis and ligand binding. Many bioinformatics
tools have been developed for studies of globular domains including
Pfam (Finn et al., 2004, 2011), SMART (Letunic et al., 2012), CDD

(Marchler-Bauer et al., 2011), SCOP (Andreeva et al., 2004) and CATH
(Sillitoe et al., 2013). In the past twenty years, SLiMs have attracted
more and more attention as they can constitute another class of
module that contribute to molecular functions of the proteins. SLiMs
are predominantly found in natively disordered regions of protein
sequences (Russell and Gibson, 2008). One property of SLiMs is their
short length, typically 3–10 amino acids long, which results in low-
binding affinities when SLiMs interact with other modules of
proteins. However, this low affinity is ideal for transient interactions
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in signal transduction or for quickly responding to a stimulus (Davey
et al., 2010). Another property of SLiMs is linear which means that
residues in one motif are adjacent in the primary sequence of the
protein. This is unlike the globular domains which are required to
make distant segments of the protein sequence being in close
proximity in the tertiary structure of the protein (Diella et al.,
2008). In addition to these, the conservation of these motifs varies:
some are highly conserved while others allow substitutions, and the
level of their conservation is lower than globular domains. However,
they are more conserved than surrounding non-functional residues
because of purifying selection. Due to the short length, high
flexibility and low-binding affinities of SLiMs, de novo SLiMs dis-
covery is more difficult than globular domains identification which
is based on high-quality multiple alignments.

Computational prediction of SLiMs is to detect over-represented
pattern in a set of sequences with a common attribute (e.g., biological
function, sub-cellular location or a common interaction partner). De
novo SLiMs discovery can be divided into different categories accord-
ing to motif representation: REs (Regular Expressions), PWMs (Posi-
tion Weight Matrices), PSSMs (Position-Specific Scoring Matrices),
profiles, HMMs and profile HMMs (Bailey, 2007; Eddy, 1998). There
are two commonly used assumptions of motif distribution for motif
discovery: (i) the one occurrence per sequence (OOPS) assumes that
each sequence in the dataset contains exactly one occurrence of each
motif, (ii) the zero or one occurrence per sequence (ZOOPS) assumes
that each sequence may contain at most one occurrence of each motif
(Bailey and Elkan, 1995a; Bailey et al., 2009; Lawrence and Reilly,
1990). The ZOOPS assumption is useful and practical for datasets in
which some motifs may be missing from some of the sequences. In
that case, the motifs found will be more accurate than using the OOPS
assumption.

Traditionally, motif finding problem has been dominated by the
methods based on REs. The TEIRESIAS algorithm (Rigoutsos and
Floratos, 1998) finds motifs in two phases: scanning and convolution.
During the scanning phase, elementary patterns (smaller pieces of
motifs) are identified, and they must appear in at least K distinct
protein sequences in the training sets. These elementary patterns are
combined into maximal patterns for the convolution phase. The
DILIMOT (Neduva et al., 2005; Neduva and Russell, 2006) firstly
deals with sequences to remove regions unlikely to contain motif
instances, such as globular domains, signal peptides, trans-
membrane and coiled-coil regions defined by using SMART and
Pfam with default parameters. Then it finds motifs in the remaining
sequence based on the TEIRESIAS algorithm and uses the binomial
distribution to score and rank found motifs. The SLiMDisc (Davey
et al., 2006) is another TEIRESIAS-based method. It is similar to
DILIMOT in the part of data acquisition, while in the part of data
analysis it further filters the found motifs according to a number of
optional criteria (evolutionary relatedness, information content and
surface probability) and ranks the motifs according to information
content. The SLiMFinder (Edwards et al., 2007) algorithm consists of
two parts: SLiMBuild constructs dimers and then combines them
with amino acid ambiguity and variable-length wildcard spacers in
unrelated protein clusters; SLiMChance estimates the probability of
returned motifs arising by chance and assigns a significance value to
each motif using the binomial distribution.

When extending the regular expression-based approaches to the
methods based on profiles, the found motifs can obtain a richer
representation. The MEME algorithm (Bailey and Elkan, 1994, 1995b)
adopts the expectation maximization (EM) algorithm to maximize
the probability of unaligned sequences given the profile. Firstly, it
chooses starting points systematically, then runs to convergence
from the point with the highest likelihood, and finally masks the
appearances of the found motifs for further discovering multiple
non-redundant motifs. However, it can only find contiguous motifs
(motif with variable-length gaps are considered as two separate

motifs) and performs relatively poor for motifs in disordered regions
of proteins. The MemeFinder algorithm (Haslam and Shields, 2012)
applies evolutionary weighting that accounts for redundancy
amongst homologous proteins and relative local conservation (RLC)
masking (Davey et al., 2009) in the MEME algorithm to discover
motifs with richer and more accurate representations.

In this paper, we put forward a de novomotif discovery method,
where SLiMs are represented by profile HMMs with the Plan
7 architecture (Eddy, 1998). The assumption of OOPS was adopted
in this paper which is controlled by setting the transition prob-
ability from the end state to joining segment unaligned sequence
state to zero. The proposed method was inspired by MemeFinder.
However, different from MEME and MemeFinder which employ
subsequences, our method uses the full-length sequences during
training models. The evolutionary weightings, which reflect the
evolutionary relationships of the query sequences to each other
and account for redundancy amongst homologous proteins, were
applied in the training of profile HMMs. This was achieved by the
selective training of HMMs, a method that has been widely used in
speech recognition (Foo and Dong, 2003; Foo et al., 2004; Meyer
and Schramm, 2006) and proved that if weightings are added to
the training sequences, the convergency of the maximum like-
lihood estimation (MLE) still holds (Arslan and Hansen, 1999). The
ordered residues of sequences were predicted by IUPred
(Dosztányi et al., 2005) and filtered out to increase the likelihood
of discovering SLiMs in the query protein sequences. In addition,
the RLC score was applied to mask out unconserved residues
because residues of motif instances are more conserved than their
surrounding residues. A new method was proposed to process the
masked residues since it is more complicated for training HMMs
by the Baum–Welch algorithm (Rabiner, 1989) than pattern
enumeration-based and profile-based methods. This approach is
equivalent to the way that treats the masked residues as special
events of profile HMMs when running the Baum–Welch algo-
rithm. Although it is simple, this trick effectively reduces the
algorithmic complexity of training HMMs as well as the impact of
long ordered regions. Finally, statistical significance of the found
motifs was returned by the Mann–Whitney U test (Tanaka et al.,
2014) which needed to calculate the log-odds scores of sequences
from both the input set and the null set.

An experimentally validated SLiMs dataset collected from the
Eukaryotic Linear Motifs (ELM) resource (Dinkel et al., 2014) and a
realistic protein–protein interaction dataset downloaded from the
Human Protein Reference Database (HPRD) (Prasad et al., 2009)
have been used to compare different methods. The results indicate
that the performance of our method is better than the profile-
based method at both the residue level and the site level on the
SLiMs dataset. However, they recovered different subsets of
annotated SLiMs within it which means the two methods can
complement each other. Although, our method used OOPS as the
assumption of motif distribution at the present stage, the results
on the realistic dataset show that its performance is approximately
equivalent to the profile-based method with the ZOOPS assump-
tion. In general, we believe that the profile HMM-based SLiMs
discovery method proposed in this paper complements the exist-
ing algorithms and provides another way to analyze the SLiMs.

2. Methods and materials

2.1. Problem formulation

We represent the motif by HMM and model the defined
positions (positions that cannot tolerate an amino acid substitu-
tion or can tolerate a limited number of amino acid substitutions
that usually share some physicochemical or structural property)
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