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H I G H L I G H T S

� Maximum likelihood estimator of mutation rates encounters computational difficulty.
� We propose a new maximum likelihood estimator based on a birth–death process model.
� The proposed method shows substantial improvement on computational speed.
� The estimation is accurate, and applicable to arbitrarily large number of mutants.
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a b s t r a c t

Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to
make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions,
the probability distribution of the number of mutants that appear in a fluctuation experiment can be
derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among
various existing estimators, the maximum likelihood estimator usually demonstrates some desirable
properties such as consistency and lower mean squared error. However, its application in real
experimental data is often hindered by slow computation of likelihood due to the recursive form of
the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-
BD, based on a birth–death process model with non-differential growth assumption. Simulation studies
demonstrate that, compared with the conventional maximum likelihood estimator derived from the
Luria–Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is
applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point
estimation.

Published by Elsevier Ltd.

1. Introduction

It has been more than half a century since Luria and Delbrück
first introduced fluctuation analysis and showed that mutations in
bacteria arise spontaneously, rather than being a response to
selection (Luria and Delbrück, 1943). In a typical fluctuation experi-
ment, a number of separate cultures (called parallel cultures), each
started with a small inoculum of cells from the same strain, are
plated on a selective medium for the test of resistance. The number
of mutants in parallel cultures are counted and then used for
statistical analysis. One important task of fluctuation analysis is to
estimate the mutation rate using the mutant counts. Under several
model assumptions, e.g., cells grow at a constant rate and mutations

occur at a rate proportional to the total number of cells, one can
explicitly derive the probability distribution of the number of
mutants that appear in a fluctuation experiment, known as the
Luria–Delbrück (LD) distribution. This distribution constitutes the
basis of mutation rate estimation (Zheng, 1999; Foster, 2006).

Various mutation rate estimators have been developed based on
the LD distribution, including the P0 estimator (Luria and Delbrück,
1943), the mean estimator (Luria and Delbrück, 1943), the median
estimator (Lea and Coulson, 1949; Drake, 1991; Jones et al., 1994)
and the maximum likelihood estimator (MLE) (Sarkar et al., 1992;
Jones et al., 1993). Extensive simulations have shown that the MLE
outperforms the other estimators in terms of bias and variance
(Stewart, 1994; Rosche and Foster, 2000) since it incorporates all
information from the mutant-count distribution (rather than just
moments or quantiles). Efficient algorithms for computing the MLE
have been proposed in the literature (Sarkar et al., 1992; Ma et al.,
1992). To quantify the uncertainty of the MLE, confidence interval
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can also be obtained (Stewart, 1994; Zheng, 2002). In addition,
several computer packages have been developed to facilitate the
use of the MLE on real fluctuation experimental data (Zheng, 2002;
Hall et al., 2009).

Despite the advantages of the MLE, a major obstacle for its
practical use lies in the computational complexity due to the
recursive form of the LD distribution, especially when the observed
number of mutants per culture is large (for example, greater than
5000) in real fluctuation experiments. To overcome this limitation,
we propose an alternative maximum likelihood-based estimator,
MLE-BD, using a birth–death process model. In the proposed method
we assume binary fission and non-differential growth for the cell
population. Under this assumption, MLE-BD is straightward to derive
and calculate. The main advantages of the proposed approach
include: (1) It improves the computational speed substantially as
compared to the traditional MLE. (2) It can easily handle practical
issues arising in real fluctuation experiments, such as (arbitrarily)
large number of mutants per culture, large number of parallel
cultures, and divergent culture sizes. (3) It provides an alternative
interpretation to the mutation rate from a “mutation probability per
division” point of view, which may be of special interest to biologists
since the mutation probability is disengaged from the growth rate.
Through simulation studies, we demonstrate that MLE-BD is com-
putationally superior to the existing MLE in several orders of
magnitude while retaining good estimation accuracy.

2. Materials and methods

2.1. An overview of mutation rate estimation using LD distribution

In order to model the cell growth and mutation process in
fluctuation analysis, several mathematical formulations have been
developed, as summarized in Zheng (1999). On one hand, these
formulations share a few common assumptions, including (i) the cell
population starts with nonmutant cells, (ii) mutations occur ran-
domly at a rate proportional to the population size, and (iii) cell
death and backward mutations are neglected. On the other hand,
they differ mainly on the assumption of cell growth. For example,
the Luria–Delbrück formulation assumes deterministic growth for
both nonmutant and mutant cells, the Lea–Coulson formulation
assumes deterministic growth for nonmutant cells but stochastic
growth (i.e., Yule process) for mutant cells, and the Bartlett formula-
tion assumes stochastic growth for both nonmutant and mutant
cells (Bartlett, 1978; Zheng, 2008). Perhaps the most widely used
formulation is the Lea–Coulson formulation. Under the specific
assumptions of this formulation, one can easily see that the number
of mutants at any time follows a Poisson-stopped-sum distribution.
This provides us an elegant, well recognized probability mass
function (pmf) for the number of mutants (Sarkar et al., 1992; Ma
et al., 1992) (we limit the scope of this paper to non-differential
growth, that is, mutants and nonmutants share the same growth
rate):

p0 ¼ e�m; pk ¼
m
k

∑
k

j ¼ 1
ϕj�1 1� jϕ

jþ1

� �
pk� j; kZ1; ð1Þ

where

m¼ μ
β1

ðn�n0Þ ¼ μβðn�n0Þ; ϕ¼ 1�e�β1t ¼ 1�n0

n
: ð2Þ

Eq. (1) provides a recursive expression for pmf, where pk is the
probability of observing k mutants in the overall population that
starts with n0 nonmutant cells and grows to size n at time t. Here,m
is a key intermediate parameter denoting the expected number of
mutations at time t, β1 is the growth rate of cells (for both
nonmutants and mutants), μ is the mutation rate per unit time,

and μβ may be called the mutation rate per cell division (often
scaled by log 2).

The above distribution, often referred to as the LD(m,ϕ)
distribution, provides the basis of various mutation rate estima-
tors. For example, for small mutation rates, the P0 estimator is
obtained by equating the zero probability, p0, to the observed
proportion of cultures containing only nonmutants. Moment-
based and quantile-based methods, such as the mean estimator
and the median estimator, equate explicit or numerical expres-
sions of the mean (expected value) and the median (50% quantile)
to their sample counterparts. With recent advances in computa-
tional technology, more accurate mutation rate estimators based
on the maximum likelihood method become prevalent. The MLE
aims to maximize the likelihood of obtaining the observed mutant
counts in parallel cultures. Following convention, one may esti-
mate m instead of μ or μβ since this intermediate parameter is
directly connected with the mutation rate through Eq. (2). Suppose
that in a fluctuation experiment with J parallel cultures, the
number of mutant cells at time t is counted as k1;…; kJ . The MLE
of m can be written as

m̂ ¼ arg max
m

ℓðm;ϕjk1;…; kJÞ ¼ arg max
m

∑
J

i ¼ 1
log pki ðm;ϕÞ: ð3Þ

In general, the MLE is more preferable in the estimation of
mutation rates because its statistical properties, such as consis-
tency and efficiency, can be easily assessed given large samples.
However, due to its computational complexity, the MLE has not
been practically applied on real experimental data until an explicit
algorithm was given by Jones et al. (1994) and implemented in a
computer package by Zheng (2002).

2.2. The birth–death process model and distribution of nonmutant
counts

The above LD distribution-based MLE (herefrom referred to as
MLE-LD) provides a sophisticated solution to mutation rate estima-
tion. However, there still exist some impediments to its effective
use in real experimental data. First and foremost, due to the
recursive form of the LD pmf, the computation of the MLE often
encounters difficulty when the observed number of mutants k in
each culture is large. In practice, the point estimation becomes slow
and the confidence interval calculation (even by the sequence
convolution technique introduced in Zheng (2002)) appears intract-
able when k is on the magnitude of several thousands, say k45000.
Strictly speaking, this issue cannot be simply bypassed through
further dilution in experiment, because the dilution procedure will
induce additional variability to the estimation (Wu et al., 2009).
Second, in real fluctuation experiments, divergent culture sizes are
always observed. In general, the observed data should include not
only the number of mutant cells k1;…; kJ , but also the number of
nonmutant cells n1;…;nJ at time t. Although the log likelihood
function can actually be rewritten as

ℓðmjk1;…; kJ ;n1;…;nJÞ ¼ ∑
J

i ¼ 1
log pki ðm;ϕiÞ

where ϕi ¼ 1�n0=ni can be further approximated by 1 for each
culture, the divergent culture sizes are in contradiction with the
deterministic growth assumption for nonmutant cells using the
Lea–Coulson formulation. Furthermore, it has been shown that the
efficiency of estimation could be much reduced if assumed homo-
genous culture sizes actually diverge (Xiong et al., 2009).

To fill in the research gap, we propose an alternative maximum
likelihood-based mutation rate estimator which can substantially
improve the computational speed. Similar to the Bartlett formula-
tion, we will assume stochastic growth for both nonmutant and
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