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H I G H L I G H T S

� A microscopic stochastic model for subdiffusion with nonlinear interaction (volume filling and adhesion) is developed.
� Macroscopic governing differential equations are derived which are consistent with the microscopic stochastic model.
� Examples of stationary particle densities are computed which are subject to anomalous aggregation and nonlinear interaction.
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a b s t r a c t

We show how the nonlinear interaction effects ‘volume filling’ and ‘adhesion’ can be incorporated into the
fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random
walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear
governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an
interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the
subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with
fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional
operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables
us to show that volume filling can prevent “anomalous aggregation,” which occurs in subdiffusive systems
with a spatially varying anomalous exponent.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic models for the diffusive motion of biological cells and organisms are well established in the mathematical biology com-
munity. Randomwalk models, stochastic differential equations and their governing nonlinear partial differential equations have been very
successful from a mathematical modelling standpoint. They provide tractable means to incorporate various taxis effects such as the
directed transport along the concentration gradient of external signals (Othmer and Hillen, 2002; Hillen and Painter, 2009; Stevens, 2000),
particle generation and degradation rates which depend on particle concentrations (Murray, 2007; Oelschläger, 1989), density dependent
dispersal rates (Méndez et al., 2012; Murray, 2007), volume exclusion effects (Painter and Hillen, 2002; Simpson and Baker, 2011;
Fernando et al., 2010), and adhesion between particles (Anguige, 2011; Armstrong et al., 2006; Johnston et al., 2012). A defining feature of
most such nonlinear reaction–diffusion-taxis equations is that the macroscopic transport processes involving diffusion and advection are
derived frommicroscopic Markovian randomwalk models; see the excellent review by Stevens and Othmer (1997). However, this does not
fit well with anomalous non-Markovian subdiffusive systems, for which the transport operators are non-local in time and the mean
squared displacement of individual particles grows proportionally to tμ, where 0oμo1 (Metzler and Klafter, 2000). Anomalous transport
occurs microscopically on the level of individual cells, e.g. for the transport of macromolecules within living cells (Golding and Cox, 2006;
Tolić-Nørrelykke et al., 2004; Weiss et al., 2004; Banks and Fradin, 2005). Moreover, it has been found that the motion of individual cells is
anomalously diffusive (Dieterich et al., 2008; Mierke et al., 2011; Fedotov et al., 2013).
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The main mathematical models for subdiffusive dynamics are the Continuous Time Random Walk (CTRW) and fractional Brownian
motion (fBm). Both processes are non-Markovian, unlike Brownian motion. The CTRW appears to be the most popular model for anomalous
dynamics (Metzler and Klafter, 2000), presumably because it admits a tractable PDE formalism (Barkai et al., 2000; Henry et al., 2010).
However, it should be noted that most articles on anomalous transport deal with linear fractional PDEs without particle interactions. Unlike
for Markovian dynamics, it is challenging to incorporate nonlinearities into the subdiffusive PDEs. For instance, even if the particle death rate
is bounded below, by naively adding a degradation term to the PDE one can achieve negative particle concentrations (Henry et al., 2006).
Transport equations for CTRWs with nonlinear reactions have only recently been derived (Mendez et al., 2010; Angstmann et al., 2013). Apart
from an article by one of the authors (Fedotov, 2013), to our knowledge, particle interactions have not yet been incorporated into the CTRW
framework. The challenge is to take into account non-linear effects: volume exclusion (Painter and Hillen, 2002) and adhesion (Anguige,
2011) together with subdiffusive transport.

The main purpose of this article is to systematically derive generic non-Markovian and non-linear integro-differential equations for the
mean concentration of particles such as randomly moving cells or individual organisms. Our aims are: (i) to understand the interaction of
non-Markovian transport and nonlinearities due to volume filling and adhesion effects and (ii) to find the stationary solutions of nonlinear
non-Markovian transport equations that describe aggregation phenomena.

On our way towards goal (i), we give a formalism which connects nonlinearly interacting microscopic CTRWs with nonlinear and non-
Markovian diffusion equations. As it turns out, our formalism also applies to the situation where the anomalous exponent μ, which governs the
trapping behaviour of the CTRW, varies in space (Chechkin et al., 2005). This situation is very significant for biology because it may explain the
widespread phenomenon of anomalous accumulation of bacteria in particular patches. One example is the aggregation of phagotrophic protists
(Fenchel and Blackburn, 1999), where “cells become immobile in attractive patches, which will then eventually trap all cells.” Another example is
the formation of nodules on the roots of nitrogen-fixing plants that contain the colony of nitrogen-fixing bacteria (Wadhams and Armitage, 2004).

It is well known that the movement of bacteria in environments with varying favorability is in the most cases determined by chemokinesis
rather than chemotaxis. The reason for this is that typically the bacteria/cells are too small to sense the macroscopic gradient of a chemotactic
substance S(x) (Erban and Othmer, 2005). Hence a model for the randommotility of microorganisms should take into account the dependence
of the transition probability γ on the nonuniformly distributed concentration S(x), rather than the dependence of a cell's jump direction on the
gradient ∂S=∂x. With this in mind, CTRWs with space-varying anomalous exponent μ arise very naturally as models for chemokinesis: suppose
that μ¼ μðSðxÞÞ is a decreasing function of a favourable substance with concentration S(x). Then the transition probability γ (i.e. the probability
of a jump away from x) equals

γðτ; SðxÞÞ ¼ μðSðxÞÞ
τ0þτ

;

where τ is the residence time and τ0 is a constant (see Eq. (14)). Hence the rate at which a bacterium jumps away from a favourable environment at
x is small, which leads to the phenomenon of anomalous aggregation (Fedotov and Falconer, 2012).

The setup is as follows: In Section 2 we quickly reiterate the derivation of nonlinear Markovian transport equations frommicroscopic stochastic
models. Section 3 contains a quick overview over the anomalous sub-diffusion literature and fractional diffusion equations. In Section 4 we use the
structured density approach and recover Markovian methods for CTRWs; this allows for the derivation of nonlinear differential equations involving
subdiffusion. Finally, in Section 5 we give examples of stationary solutions to nonlinear fractional PDEs that describe the aggregation phenomenon.

2. Markovian transport with nonlinear particle interaction

In this section, we briefly review the standard derivation of nonlinear diffusion equations, starting from a microscopic randomwalk model. For
simplicity, we consider a one dimensional lattice of sites x which are evenly spaced with spacing h. We study the dynamics of the concentration
ρðx; tÞ of particles (e.g. cells and bacteria). We assume that particles perform instantaneous jumps to neighbouring lattice sites. We write T þ ðx; tÞ
and T � ðx; tÞ for the rates of jumps to the right resp. left. Rates are instantaneous and may vary in space x and in time t. The total jump rate is then
Tðx; tÞ≔T þ ðx; tÞþT � ðx; tÞ. The master equation for ρðx; tÞ reads
∂ρðx; tÞ

∂t
¼ T þ ðx�h; tÞρðx�h; tÞþT � ðxþh; tÞρðxþh; tÞ�Tðx; tÞρðx; tÞ: ð1Þ

Transport models for diffusion, chemotaxis, volume filling and adhesion have been studied by Anguige (2011), Anguige and Schmeiser (2009) and
Painter and Hillen (2002). A general model which accommodates all the above effects is given by

T7 ðx; tÞ ¼ λ0ð1�½Sðx7h; tÞ�Sðx; tÞ�Þqðρðx7h; tÞÞaðρðx8h; tÞÞ ð2Þ
Here, λ0 is the rate parameter, and Sðx; tÞ is a spatio-temporally varying external signal (e.g. a chemoattractant or chemorepellent concentration). The
functions qðρÞ and aðρÞ model volume filling and adhesion phenomena; they are decreasing with respect to the concentration density ρðx; tÞ and
map to values in ½0;1�. The volume filling function qðρðx; tÞÞ can be interpreted as the probability that a particle will be accommodated at x, should it
attempt to jump there at time t. With the remaining probability 1�qðρðx; tÞÞ, it will not find enough room at x and hence will not jump. Similarly,
the adhesive effect is modelled with the function aðρðx; tÞÞ: Given that a particle attempts to jump from x to xþh at time t, it succeeds in jumping
there with probability aðρðx�h; tÞÞ. With probability 1�aðρðx�h; tÞÞ, it will stay “glued” to the particles at position x�h and thus not jump.

Eq. (1) governs the evolution of the concentration ρðx; tÞ on the discrete lattice. We perform a Taylor expansion in the lattice spacing h
(see appendix) and consider the spatiotemporal scaling limit:

h↓0; λ0↑1; h2λ0-D0: ð3Þ
The particle concentration is then governed by the nonlinear advection–diffusion equation:

∂ρ
∂t

¼ ∂
∂x

DðρÞ∂ρ
∂x

�ρvðρÞ
� �

ð4Þ
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