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a b s t r a c t

Chemotaxis, or gradient following, is important in many biological systems, but suffers from noise. How
receptors are positioned on the cell or sensing device influences the quality of the inferences they can
support about the gradient, suggesting that their configuration might be optimised. We show that for an
elliptical sensing device, inhomogeneous receptor placement could be a potential approach for cells to
eliminate bias in the posterior distribution of the gradient direction. We use information theory to
calculate the mutual information between the gradient and the binding pattern, thus finding the optimal
receptor arrangement for gradient sensing.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many biological systems rely on chemotaxis. These include
neutrophils migrating to sites of inflammation (Downey, 1994), the
slime mold Dictyostelium discoideum hunting for food (Swaney et
al., 2010), and neuronal growth cones navigating to find their
targets in the developing nervous system (Mortimer et al., 2008;
Lowery and Van Vactor, 2009). The ability of such sensing devices
to detect chemical gradients depends sensitively on unavoidable
stochastic fluctuations due to the limited numbers of receptors,
intracellular signalling molecules, and ligand molecules available
in the gradient itself (Berg and Purcell, 1977; Bialek and
Setayeshgar, 2005). Detecting a gradient can thus be seen as a
paradigmatic problem of reasoning in the face of uncertainty
(Mortimer et al., 2009). Here we focus on noise due to receptor
binding fluctuations.

A powerful approach for analysing such problems is to consider
the optimal statistical inference that an ideal observer would
perform (Andrews and Iglesias, 2007; Mortimer et al., 2009;
Fuller et al., 2010; Hu et al., 2010, 2011a; Mortimer et al., 2011).
This involves combining available information with prior assump-
tions. However a critical unanswered question is the extent to
which some spatial distributions of receptors admit better gradi-
ent detection than others. Starting from the familiar model of the
sensing device (hereafter ‘cell’) as a two-dimensional ellipse with
receptors distributed on the surface, we derive the mutual
information between the gradient and binding pattern as a target
quantity to maximise in order to achieve optimal inference.

A recent theoretical analysis shows that with a uniformly
distributed set of receptors, an elliptical cell can make incorrect
inferences about the gradient when the concentration and the
gradient steepness are low (Baba et al., 2012). Surprisingly, the cell
has a strong bias to infer that the gradient is parallel to the minor
axis, regardless of the actual gradient direction. This is because
equal spacing of receptors on a non-circular surface leads to highly
unequal variances in the estimates of the x and y components of
the gradient. Here we show that this can be overcome by a
nonuniform placement of receptors so that the inference is free
of biases due to the shape of the cell.

2. Model

We consider the cell as estimating the gradient μ
-

of a spatial
function Cð r-Þ ¼ C0expðμ

-
r
-Þ. Receptor positions r

-
are relative to

the ‘standard’ length scale 10 μm and the gradient μ
-

is dimension-
less. We assume that the information available about C consists of
independent binary random variables bi representing the bound
and unbound states of a set of n receptors located at positions
r
-
i AR2; i¼ 1…n. Standard Michaelis–Menten kinetics implies that

the binding probability of each receptor is

Pðbi ¼ 1Þ ¼ Cð r-iÞ

ðKdþCð r-iÞÞ
with Kd being the dissociation constant. The likelihood function of
the complete binding state is
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whose logarithm is

lnLbðμ
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The cell should combine likelihood information with its a priori
estimate of the gradient. The prior has two components: the first is
the direction ϕ¼∠μ

-
, which is conventionally represented as a von

Mises distribution as in Hu et al. (2011a):

PðϕÞ ¼ expðκ cos ðϕ�δÞÞ
I0ðκÞ

;

where δ is the prior bias of the cell regarding the gradient
direction, κ is the strength of bias, and I0ðκÞ is the modified Bessel
function of the first kind. This prior could be determined by
previous measurements, as in a filtering scheme, or by an intrinsic
bias. The second component is the strength s¼ jμ-j of the gradient.
For convenience, we considered a simple, half-Gaussian form for
this PðsÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
β=π

p
HðsÞexpð�βs2Þ, where β parameterizes the

uncertainty. This favors small gradients, a conclusion invited by
the exquisite sensitivity of many sensing systems (Mortimer et al.,
2009; Mao et al., 2003). However, its precise form is not expected
to influence the results very strongly, provided it is smooth and
covers the range of relevant values. We consider these two
components to be independent, making the overall prior
Pðs;ϕÞ ¼ PðsÞ � PðϕÞ.

Expanding the likelihood function to second order around 0
in μ

-
:
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leads to the maximum likelihood estimate (MLE)

μ
-ML

¼ S�1Δb r
-

This formula is more general than that derived in Hu et al.
(2010) since it does not assume a circular cell or a uniform
distribution of receptors on the cell's surface. The average binding
probability E½bi� at each receptor is

E½bi� ¼
C0 expðμ

- � r-Þ
KþC0 expðμ

- � r-Þ
� C0
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þ C0K
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and therefore
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;

confirming that the expectation of μ
-ML

over all possible binding
patterns is the actual gradient.

In the large n limit, the properties of the MLE ensures that
μ
-ML

-N ðμ-; S�1Þ. S�1 is the covariance matrix of the maximum
likelihood estimate and only depends on the positions of the
receptors, not the shape of the cell. We call S the ‘receptor matrix’
as it ultimately encodes information about the receptor arrange-
ment. As S is a symmetric matrix it can be diagonalised, implying
that there exists a coordinate system defined by the two eigen-
vectors of S (shown in Fig. 1) such that the two orthogonal

components of μ
-ML

are uncorrelated, and their variances are the

eigenvalues of the matrix S�1. Henceforth, we will define all
angles relative to this coordinate system, with x; y axes identified

with the first and second eigenvectors of S�1. Note that these axes
will in general be different from the axes of the elliptical cell.
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of the matrix S�1 and
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where ri;φi are the positions of the receptors in polar coordinates,
and thus recover the familiar Gaussian approximation for the
likelihood function (Hu et al., 2010):

Pð Z!js;ϕÞ ¼ 1
2πσ1σ2

exp �ðZ1�sσ2
1 cos ϕÞ2
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3. Eliminating bias

For certain receptor distributions for which σ1aσ2, the var-
iances in μx

ML and μy
ML can differ, causing the cell consistently to

estimate the gradient direction

~ϕ ¼ tan�1 μML
x

μML
y

 !

parallel to its minor axis at low concentration or gradient steep-
ness, as seen in Baba et al. (2012). At first glance, this result might
be counter-intuitive. However, if σ1cσ2, equivalent to a ‘receptor
ellipse’ elongated in the x direction, the cell can much more easily
detect the asymmetry in the concentration in the x direction (low
variance) than in the y direction (high variance). The inequality in
variances leads to bias in the MLE due to the highly nonlinear
nature of the function tan�1. Therefore, at shallow gradients the
estimated direction of the gradient has a tendency to favor the
minor axis (the y direction). The estimated direction also has
higher variance if the true gradient is in the x direction than if it is
in the y direction as illustrated in Fig. 2.

For simplicity we assume that the cell is only interested in the
gradient direction rather than its magnitude. In order to find the
maximum a posteriori (MAP) estimate for the actual gradient
direction ϕtrue, we seek to solve ϕ̂MAP ¼ arg maxϕPðϕj Z

!Þ where
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where

A¼ 1=2ðσ2
1 cos 2ϕþσ2

2 sin 2ϕÞþβ
B¼ Z1 cos ϕþZ2 sin ϕ

Fig. 1. Schematic problem representation. The orange dots represents receptors.
The axes of the coordinate system are the two eigenvectors of the ‘receptor ellipse’
matrix S¼∑i r

-
i r
-

T

i C0K=ðC0þKÞ2 (blue) which might or might not coincide with the
axes of the actual cell (red). The two axes of the ‘receptor ellipse’ determines the
properties of gradient estimation. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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