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H I G H L I G H T S

� Staying together is a crucial operation for construction of complexity in biology.
� Staying together means that cells do not separate after division.
� We study the evolution of staying together.
� We explore a stochastic process with finite population size.
� We derive exact results for the limit of weak selection.
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a b s t r a c t

Staying together means that replicating units do not separate after reproduction, but remain attached to each
other or in close proximity. Staying together is a driving force for evolution of complexity, including the
evolution of multi-cellularity and eusociality. We analyze the fixation probability of a mutant that has the
ability to stay together. We assume that the size of the complex affects the reproductive rate of its units and
the probability of staying together. We examine the combined effect of natural selection and random drift on
the emergence of staying together in a finite sized population. The number of states in the underlying stochas-
tic process is an exponential function of population size. We develop a framework for any intensity of selection
and give closed form solutions for special cases. We derive general results for the limit of weak selection.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is part of the effort to explore how staying together
(ST) can contribute to the emergence of complexity in evolution
(Tarnita et al., 2013; Olejarz and Nowak, in press). ST means that
reproductive units do not separate, but stay together. For example,
cells that have divided can remain attached to each other forming
multi-cellular filaments or aggregates. ST in the context of cellular
division can therefore lead to the evolution of multi-cellularity,
which is a major topic of investigation (Bell and Mooers, 1997;
Bonner, 1998, 2008; Maynard Smith and Szathmary, 1998; Michod,
1999, 2007; Furusawa and Kaneko, 2000; Carroll, 2001; Pfeiffer
and Bonhoeffer, 2003; Kirk, 2003, 2005; King, 2004; Grosberg and
Strathmann, 2007; Rainey, 2007; Willensdorfer, 2008; Kolter,
2010; Rossetti et al., 2010, 2011; Koschwanez et al., 2011; Ratcliff
et al., 2012, 2013; Norman et al., 2013). Another example of ST is
that the offspring of a social insect do not leave the nest but stay
with their mother and participate in raising further offspring

(Wilson, 1971; Gadagkar, 1994, 2001; Hunt, 2007; Hölldobler and
Wilson, 2009). ST in the context of subsocial insects is a trajectory for
the evolution of eusociality (Nowak et al., 2010a). Another example of
ST is that reproducing intra-cellular symbionts remain in the same
host cell. The evolution of eukarya by endosymbiosis (Margulis, 1981)
is a form of staying together (Tarnita et al., 2013). At the dawn of life
protocells enable a staying together of RNA sequences that replicate
inside them (Chen et al., 2005; Bianconi et al., 2013). It is therefore of
great interest to study fundamental aspects of the evolutionary
dynamics of staying together. Previous work has focused on deter-
ministic evolutionary dynamics (Tarnita et al., 2013; Olejarz and
Nowak, in press). Here we develop a stochastic approach.

We study the fixation of ST in a population of finite size, N. We
introduce a single mutant that has the ability to stay together and
calculate the probability that it reaches fixation in a population
where the resident type does not stay together.

Our paper is structured as follows. In Section 2, we describe the
basic model and key results. In Section 3, we show the underlying
mathematical ideas and derivation of our results. In Section 4, we
provide a brief summary and outlook for future research.
The Appendix contains detailed derivations.
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2. Model and key results

We consider a population of constant and finite size, N. There
are two types: A has the ability to form complexes by staying
together (ST), while B only exists in single units. We use the
notation Ai to describe a complex of size i. The largest conceivable
complex size is given by the size of the population, N. In this case
the entire population would consist of a single complex.

We assume that the rate of reproduction of A units depends on
the size of the complex. An A unit in a complex of size i has
reproductive rate ai. In comparison a B unit has a fixed reproduc-
tive rate, 1, which determines the time scale.

If a unit within Ai reproduces, there are two possibilities: (i) the
new unit can stay with the complex, in which case we obtain a
complex that has grown in size, Aiþ1; or (ii) the new unit leaves
the complex, in which case we obtain an additional new complex
of size one, A1. The former happens with probability qi while the
latter happens with probability 1�qi. Thus, both the rate of
reproduction and the probability of ST can depend on the size of
the complex.

Reproduction in our system is described by the following
biological reactions:

Ai⟶
iaiqi Aiþ1

Ai ⟶
iaið1�qiÞAiþA1

B⟶
1
BþB ð1Þ

In any one time step we choose a random unit for reproduction
proportional to fitness and simultaneously we choose a random
unit to die. If a unit in a complex Ai (with iZ2) dies, then we
obtain a complex that is one unit smaller, Ai�1. If an A1 unit dies
then this complex disappears. Similarly if a B unit dies, the total
number of B units in the whole population decreases by one.

Death in our system is described by the following biological
reactions:

Ai⟶
i
Ai�1; iZ2

A1⟶
1
0

B⟶
1
0 ð2Þ

In contrast to the previous work on staying together which was
based on deterministic equations (Tarnita et al., 2013; Olejarz and
Nowak, in press), we do not consider the removal (death) of entire
complexes. Instead in our system individual units die to ensure
constant population size. This assumption facilitates the analysis
of the stochastic process (Fig. 1).

The above notation for the biological reactions in our system is
borrowed from chemical kinetics. Note however that we do not
use this notation to describe a time continuous process, but a
discrete one. Moreover, in our model there is always exactly one
birth and one death event to ensure that the population size is
strictly constant as in the Moran (1962) process.

Unlike the Moran process (for two types) our system has a very
large number of states. If we denote by xi the number of complexes
of type Ai and by y the number of B units in the population, then a
state of the process is given by a vector ðx1; x2;…; xN ; yÞ subject to
the constraint:

yþ ∑
N

i ¼ 1
ixi ¼N: ð3Þ

The total number of states grows exponentially with population
size, N.

The main biological question that we want to answer is the
following. We introduce one A1 unit in a population of N�1 many
B units and ask what is the probability that the lineage arising

from this single A unit takes over the whole population? Thus, we
want to calculate the fixation probability of A. There is either
fixation or extinction. Let ρ be the probability that starting with
one A unit the process eventually reaches a state where all units
are of type A and type B has become extinct (Fig. 2).

Let us consider a simple case first. If qi's are all 1, then A units
always stay together. Since we start with a single A1 complex, at
any time we have only at most one A complex. Hence the state
space of our stochastic process is simply given by the total number
of A units, i¼ 0;1;…;N. There are two absorbing states, 0 and N,
while the remaining states, i¼ 1;…;N�1, are transient. Using
standard methods (Karlin and Taylor, 1975; Nowak, 2006), we
obtain

ρ¼ 1þ 1
a1

þ 1
a1a2

þ⋯þ 1
a1a2⋯aN�1

� ��1

: ð4Þ

For our general systemwe can derive an analytic expression for
the fixation probability in the limit of weak selection. In this limit,
we assume that the reproductive rate of all units is very close to 1.
We introduce the notation ai ¼ 1þwsi, where si is the payoff
(fitness contribution) for being in a complex of size i and w is
the intensity of selection. For w¼0 we have neutrality. The limit of
weak selection is given by w-0. For studying weak selection, we
assume that w is small enough so that higher order terms of w are

Fig. 1. Stochastic evolution of staying together. Blue spheres represent A units
(cells) that have the ability to stay together after reproduction. Red spheres
represent B units which always separate. (a) The fitness values of units depend
on their type and for A units also on the size of the complex in which they are in. An
A unit in a complex of size i has reproductive rate ai. B units have reproductive rate
1. (b) In any one time step a random unit is chosen for reproduction proportional to
fitness and a random unit is chosen for death. The total population size (total
number of all units) remains constant. In this example, an A unit in the complex
of size 3 has reproduced; this complex has now size 4. A B unit has died.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 2. We introduce a single A unit (blue) in a population of B units (red). The
probability that the stochastic processes eventually reach a state where all units in
the population are of type A is called the fixation probability, ρ, of A. Note that there
is a single absorbing state of only B units, but there are many states that have the
property of consisting of only A units. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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