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a b s t r a c t

Identifying interesting relationships between pairs of genes, presented over some of experimental
conditions in gene expression data set, is useful for discovering novel functional gene interactions. In this
paper, we introduce a new method for id entifying L ocal C o-regulation R elationships (IdLCR). These
local relationships describe the behaviors of pairwise genes, which are either up- or down-regulated
throughout the identified condition subset. IdLCR firstly detects the pairwise gene-gene relationships
taking functional forms and the condition subsets by using a regression spline model. Then it measures
the relationships using a penalized Pearson correlation and ranks the responding gene pairs by their
scores. By this way, those relationships without clearly biological interpretations can be filtered out and
the local co-regulation relationships can be obtained. In the simulation data sets, ten different functional
relationships are embedded. Applying IdLCR to these data sets, the results show its ability to identify
functional relationships and the condition subsets. For micro-array and RNA-seq gene expression data,
IdLCR can identify novel biological relationships which are different from those uncovered by IFGR
and MINE.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For a data set with tens of thousands of variables, which may
contain various, undiscovered relationships, how can we effi-
ciently identify the interesting relationships? One way to begin
exploring the data set is to determine what kinds of relationships
we are interested in, then to search for variable pairs with these
relationships using data mining. The methods following this way
face two issues, defining similarity and robust discovery. The
former is related to determining what kinds of relationships we
are interested in. The latter concerns how to remove noises as
much as possible. These methods can be divided into the following
two categories, biclustering methods and the others.

In biclustering methods, a submatrix of a data set is identified by
using various definitions of similarity for interesting relationships.
Variables express the similar behavior over columns in the subma-
trix. The definitions of similarity employed in these methods are

based on the constant model (Hartigan, 1975; Busygin et al., 2002),
the additive model (Getz et al., 2000; Califano et al., 2004; Sheng
et al., 2003), the multiplicative model (Cheng and Church, 2000;
Yang et al., 2003; Wang et al., 2002; Lazzeroni and Owen, 2002; Segal
et al., 2003; Tang et al., 2001; Klugar et al., 2003; Hochreiter et al.,
2010), the general linear model (Gan et al., 2005, 2008; Zhao et al.,
2008), and correlation (Mosca et al., 2009; Bhattacharya and De,
2009; Mosca et al., 2009; Nepomuceno et al., 2011; Gao et al., 2012).
These biclustering methods can delete the redundant samples and
obtain some robust discoveries. However, because of the restriction
of those definitions of similarity, these methods can only capture the
linear relationships, which are some of the interesting relationships
describing the similar behaviors by genes in gene expression data.

In the other category, the pairs are ranked by their scores which
are calculated according to some similarity measure of depen-
dence for the pair. Then the top-scoring pairs should be examined.
These methods include IFGR (Mosca et al., 2009) and MINE (Reshef
et al., 2011), in which the top-scoring pairs are the robust
discoveries. IFGR employs a definition of similarity based on
correlation and genetic algorithm to delete the irrelevant samples,
and then ranks the pairs to get the robust discoveries. But it also
captures the linear relationships because of the restriction of the
definition of similarity. MINE employs a maximal information
coefficient to identify a wide range of relationships. However,
since the method does not consider that the irrelevant or redun-
dant samples mingling in data set, some pairs of variables
expressing their close associations over some of the samples get
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low scores. Then, this kind of interesting relationships over some
sample subset is missed.

In this paper, we propose a new method for identifying local
co-regulation relationships (IdLCR). IdLCR firstly detect the asso-
ciations taking various functional forms by using a regression
spline model. However, many of the functional relationships are
not biologically meaningful. We are only interested in those
functional relationships which can describe the close associations
between pairs of variables and the positive and negative regula-
tions. Then, by employing an appropriately punished Pearson
correlation, IdLCR can select the local co-regulation relationships
from the detected functional ones because Pearson correlation
itself is a measure of linear dependence, which are local
co-regulated. These identified relationships can describe both the
close associations between pairs of variables and the similar
behaviors expressed by them.

For simulation data sets, the results indicate that IdLCR can
identify various embedded functional relationships only by using
the regression spline model. For both microarray and RNA-seq
gene expression data, the results from running IdLCR show that
the novel biological relationships are identified. Our method is
also comparable with, if not better than, IFGR and MINE in
identifying different biological relationships. Source code for IdLCR
is available upon request.

2. Methods

We assume that there are some different pairs of variables (x
and y), and for each pair, there are n observation pairs. Let
N¼ f1;2;…;ng be the index set. We firstly aim to detect the
functional relationships fitted by jIj observation pairs of x and y,
where I�N and jIj is the size of the index subset I. Then, we
identify the co-regulation relationships, which describe the close
associations between pairs of variables, from all the detected
functional relationships. Hence, we split discussion of our meth-
odology into two parts. In Section 2.1, we propose a regression
spline model and give the discussions for the model. In Section 2.2,
we motivate and introduce a punished Pearson correlation.

2.1. Regression spline model

2.1.1. The model
Denote by m the functional relationship between x and y.

Because of the irrelevant or redundant samples mingling in, only
jIj observation pairs of x and y satisfy yi ¼mðxiÞþϵi (iA I), where
each ϵi is the observation of a random variable denoting the
variation of y around m(x). Since m is a smooth function from R

(the set of the real number) to R, the following regression spline
model yi can be constructed to approximate it:

yi ¼ ∑
K

k ¼ 1
γkbkðxiÞþϵi ¼ BðxiÞTΓþϵi; iA I; ð1Þ

where fb1;…; bKg is a prescribed set of uniform B-spline basis
functions with the degrees d, the coefficients γ1;…; γK are called
control points or de Boor points and K is the number of control
points. The second equality above holds if B is the basis function
vector containing the B-spline basis functions bk; k¼ 1;…;K as
elements and Γ ¼ ðγ1;…; γK ÞT .

In the model (1), the spline curve can be determined when Γ is
known. In order to estimate the parameter vector Γ, we assume
that, for the n observations y1;…; yn, yi �NðBðxiÞΓ;σ2Þ; iA I and
yj �Nðμy;σ2

yÞ; jA J ¼N\I. Then the joint density function for the jNj

observations can be written as the following form:

f ðyjΓ;σ2;μy;σ
2
yÞ ¼ ∏

iA I

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
�ðyi�BðxiÞTΓÞ2

2σ2

 !
∏
jA J

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

y

q
exp

�ðyj�μyÞ2
2σ2

y

 !
: ð2Þ

The form (2) is a likelihood for evaluating how well the points
fit the model. The higher the likelihood is, the better the points fit
the model. By maximizing the likelihood, we get the following
maximum likelihood estimators (MLEs):

bΓ ¼W ∑
iA I

yiBðxiÞ
 !

; ð3Þ

cσ2 ¼ 1
jIj∑iA I

ðyi�BT ðxiÞbΓ Þ2; ð4Þ

cμy ¼
1
jJj∑jA J

yj; ð5Þ

cσ2
y ¼ 1

jJj∑jA J
ðyj�cμy Þ2; ð6Þ

where W ¼ ð∑iA IBðxiÞBT ðxiÞÞ�1 if ∑iA IBðxiÞBT ðxiÞ is invertible,
otherwise, W is the pseudo inverse matrix of ∑iA IBðxiÞBT ðxiÞ.

Upon constructing the MLEs, we can identify the functional
relationship if the index subset I is determined. However, the two
tasks, identifying the functional relationship, determining I, are
coupled each other. And when one is finished, the other is easy to
get. Here, we employ EM algorithm to deal with that.

The algorithm is outlined as below:

Step 1. All indices of the observations are assigned randomly to
the index subset I and J ¼N\I, estimate the parameters:
ð0ÞΓ , ð0Þσ2 , ð0Þμy,

ð0Þσ2
y .

Step 2. In the (kþ1)th iteration, assign each index s to the index
subset with minimum deviation. The deviation for the
index subset I is measured by

LðkÞs;I ¼ � log ∏
iA I

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πððkÞσ2 Þ

q exp
�ðyi�BT ðxiÞððkÞΓ ÞÞ2

2ððkÞσ2 Þ

 !0B@
1CA:

The deviation for the index subset J is

LðkÞs;J ¼ � log ∏
jA J

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πððkÞσ2

y Þ
q exp �ðyj�

ððkÞμyÞ2
2ððkÞσ2

y Þ
Þ

 !
:

0B@

Step 3. Compute ðkÞΓ , ðkÞσ2 , ðkÞμy,
ðkÞσ2

y .
Step 4. Repeat 2 till convergence.

2.1.2. Discussions
Note that the determined functional relationship is affected by

the choices of the number of control points K and the degree of the
spline basis functions d. For different K and d, the constructed
regression spline models are different, then the determined
functional relationships are also different. Which one is the right
one? We give our choices and grounds.

In a B-spline, the degree d controls the smoothness of a spline
curve. The bigger the degree is, the more smooth the spline cure is.
However, with increasing of the degree, blending function is more
difficultly to precalculate. When the degree d is equal to 3, the spline
cure is begin to be smooth and the blending function is also easily to
precalculate. Hence, cubic B-spline with uniform knot-vector is the
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