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H I G H L I G H T S

� We formulate a simple set of group selection models.
� For some of those, inclusive fitness gets the direction of selection wrong.
� Inclusive fitness also does not offer a way to find the model solution.
� One needs to have the solution already in order to even compute inclusive fitness.
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a b s t r a c t

A widespread claim in evolutionary theory is that every group selection model can be recast in terms of
inclusive fitness. Although there are interesting classes of group selection models for which this is
possible, we show that it is not true in general. With a simple set of group selection models, we show
two distinct limitations that prevent recasting in terms of inclusive fitness. The first is a limitation across
models. We show that if inclusive fitness is to always give the correct prediction, the definition of
relatedness needs to change, continuously, along with changes in the parameters of the model. This
results in infinitely many different definitions of relatedness – one for every parameter value – which
strips relatedness of its meaning. The second limitation is across time. We show that one can find the
trajectory for the group selection model by solving a partial differential equation, and that it is
mathematically impossible to do this using inclusive fitness.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Group selection has always been a controversial issue. It is both
advocated as an essential ingredient of human evolution (Sober
and Wilson, 1998; Wilson and Wilson, 2007), and described as a
superfluous concept, that does not explain any phenomenon we
do not already understand with other models (Williams, 1966;
Dawkins, 1989; Pinker, 2012). While there is disagreement con-
cerning the relevance, both sides of the debate have come to agree
that group selection models can always be reformulated in terms
of inclusive fitness (Queller, 1992a,b; Lehmann et al., 2007;
Holldobler and Wilson, 2009; Wild et al., 2009; Wade et al.,
2010; Lion et al., 2011; Marshall, 2011a; Gardner et al., 2011).

The agreement on the equivalence still leaves room to disagree
which one of the two is more valuable for understanding how
group selection works. One position is that, since both are
equivalent, there is no reason to look at group selection models
other than through the lens of inclusive fitness (Dawkins, 1989;
Lehmann et al., 2007; West et al., 2007,2008; Wild et al., 2009;
Lion et al., 2011; Marshall, 2011a; Gardner et al., 2011). Another
position is that, even though the two are equivalent, there is value
in the alternative way of looking at models, that stresses a balance
of within-group selection and between-group selection (Sober and
Wilson, 1998; Wilson and Wilson, 2007; Wilson, 2008; Holldobler
and Wilson, 2009; Wade et al., 2010).

Because the “mathematical equivalence” is such a central point
of consensus, one would expect it to be a well-defined mathema-
tical statement with a mathematical proof. There is, however, no
such theorem in the literature (see also Queller, 1992a; van Veelen
et al., 2012). As a consequence it remains unclear what “mathe-
matical equivalence” means here, and whether or not the claim is
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correct. In this paper, we will present a class of group selection
models that allows us to explore what it could mean for group
selection models and inclusive fitness to be equivalent.

It also uncovers two different kinds of limitations. The limitations
imply that group selection and inclusive fitness are not equivalent
in general, even though they can be under certain assumptions.

2. The model

The model is a generalization of Luo (2014). Individuals find
themselves in groups of equal size, and can be one of the two
types: defectors and cooperators. Individual reproduction happens
at different rates: cooperators reproduce at rate 1, defectors
reproduce at rate 1þs. Every individual reproduction event
induces a death event; if one individual reproduces, one random
individual from the same group is chosen for elimination, thereby
keeping group sizes constant. Entire groups also reproduce, and
when they do, they produce a daughter group with the exact same
proportion of cooperator and defectors. The rate at which this
occurs depends on the fraction of cooperators in the group;
a group of size n with i cooperators in it reproduces at rate
1þuði=nÞα . That implies that all-defector groups reproduce at rate
1, and all-cooperator groups reproduce at rate 1þu. Every group
reproduction event induces a group death event; if a group
reproduces, a random group is chosen for elimination (see Fig. 1).

Being a cooperator therefore comes at a cost – it reduces the
reproduction rate of the individual by s – but it has a benefit for all
group members, including itself, through an increase in the rate at
which the group as a whole reproduces. The baseline reproductive
rates for individuals and groups are set to unity for simplicity, but
Appendix E also covers the more general case where the baseline
reproduction rates of individuals and groups are allowed to differ.
A setup that allows for groups of different sizes and a variety of
group level events is also possible (Simon, 2010; Simon et al., 2012,
2013). Several other models (for example Kimura, 1983; Gardner
and West, 2006; Traulsen and Nowak, 2006) are based on group
level dynamics with a similar flavor, although the analysis we
carry out on the dynamics of the distribution of the population is
distinct from these previous approaches.

If we take a limit, where group size and number of groups go
to infinity, then the dynamics simplify to a partial differential
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Fig. 1. Panel (a) depicts an individual level event, panel (b) a group level event.
Cooperators (blue) reproduce individually at intensity 1, defectors (red) at intensity
1þs. When an individual reproduces, a random individual is chosen to die. Groups
reproduce at intensity 1þuði=nÞα , where i is the number of cooperators in a group,
and n the group size. When a group reproduces, a random group is chosen to die.
The effect of the events on the composition of the population is visualized below
each panel; they change how many groups there are with 0, 1, 2 and 3 cooperators.
In the limit of the group size going to infinity, groups are characterized by the
fraction x of cooperators, and as the number of groups goes to infinity, the
population state becomes a density over ð0;1Þ, that describes how many groups
there are for different cooperator frequencies x. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 2. A density describes the relative frequencies of groups with different fractions x of cooperators, where x varies between 0 and 1. The PDE describes how these densities
change over time. The changes are caused by two effects. The first is that individual reproduction makes all groups to become less cooperative –which makes the “humps” in
the distributions move to the left in both examples. The second is that cooperative groups as a whole reproduce faster – which results in the right end of the distributions
being lifted up. As time elapses, the densities change, until the two effects balance at a stable steady state, described by the equilibrium distribution. The upper series (a) has
α¼ 3, s¼1 and u¼4, the lower series (b) has α¼ 1, s¼1 and u¼1.5. For both the initial distribution is proportional to a truncated normal distribution with mean 0.5 and
variance 0.035. In both cases the densities converge to a steady state density in which all group types are represented, but in the first case there are more cooperators than
defectors, overall, and in the second there are more defectors than cooperators.

M. van Veelen et al. / Journal of Theoretical Biology 360 (2014) 279–289280



Download English Version:

https://daneshyari.com/en/article/4496123

Download Persian Version:

https://daneshyari.com/article/4496123

Daneshyari.com

https://daneshyari.com/en/article/4496123
https://daneshyari.com/article/4496123
https://daneshyari.com

