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H I G H L I G H T S

� Immune boosting induces cyclical behaviour in a model of infectious disease dynamics.
� Seasonal forcing of transmission also induces cyclical behaviour in this system.
� The birth rate, waning rate and forcing interact to generate complex dynamics.
� Periodic cycles in the forced system are related to unforced limit cycle dynamics.
� The “demographic transition” may lead to new dynamical regimes for certain diseases.
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a b s t r a c t

The impact of seasonal effects on the time course of an infectious disease can be dramatic. Seasonal
fluctuations in the transmission rate for an infectious disease are known mathematically to induce
cyclical behaviour and drive the onset of multistable and chaotic dynamics. These properties of forced
dynamical systems have previously been used to explain observed changes in the period of outbreaks of
infections such as measles, varicella (chickenpox), rubella and pertussis (whooping cough). Here, we
examine in detail the dynamical properties of a seasonally forced extension of a model of infection
previously used to study pertussis. The model is novel in that it includes a non-linear feedback term
capturing the interaction between exposure and the duration of protection against re-infection.
We show that the presence of limit cycles and multistability in the unforced system give rise to complex
and intricate behaviour as seasonal forcing is introduced. Through a mixture of numerical simulation and
bifurcation analysis, we identify and explain the origins of chaotic regions of parameter space.
Furthermore, we identify regions where saddle node lines and period-doubling cascades of different
orbital periods overlap, suggesting that the system is particularly sensitive to small perturbations in its
parameters and prone to multistable behaviour. From a public health point of view — framed through
the ‘demographic transition’ whereby a population's birth rate drops over time (and life-expectancy
commensurately increases) — we argue that even weak levels of seasonal-forcing and immune boosting
may contribute to the myriad of complex and unexpected epidemiological behaviours observed for
diseases such as pertussis. Our approach helps to contextualise these epidemiological observations and
provides guidance on how to consider the potential impact of vaccination programs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The impact of seasonal effects on the time course of an
infectious disease can be dramatic. Two well-known examples
are the observed winter-onset of influenza in temperate climates
(Lipsitch and Viboud, 2009), and the seasonal fluctuation in
incidence of mosquito-borne diseases such as dengue (Aguiar
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et al., 2011). While the latter is well understood as a direct
consequence of the role of climatic factors in driving annual
fluctuations in the mosquito population size, the underlying
causes for the former are imperfectly understood. Influenza
seasonality may involve a range of climatic variables such as
temperature and humidity that interact with biological (e.g. virus
survival) and sociological (e.g. human contact and mixing beha-
viour) factors (Altizer et al., 2006; Lipsitch and Viboud, 2009).
Many other diseases, such as measles, varicella (chickenpox),
rubella and pertussis (whooping cough) also display seasonal
characteristics which, importantly, have changed over the course
of the 20th century (Bauch and Earn, 2003).

From the mathematical point of view, the effects of seasonal
forcing in an epidemiological context can be studied in a number
of ways. The first and foremost is the bifurcation approach,
through which variations in model solutions due to changes in
system parameters are analyzed using bifurcation diagrams
(Kuznetsov, 2004). As the intensity and frequency of seasonal
forcing are varied, the appearance of forced oscillations in the
population can be studied systematically. Many studies of such
systems exist in the literature, see for example Bolzoni et al.
(2008), Kuznetsov and Piccardi (1994), Kuznetsov et al. (1993),
Rinaldi and Muratori (1993), Doveri et al. (1993), Scheffer et al.
(1997), Rinaldi et al. (1993) and Tanaka and Aihara (2013). Related
examples include an analysis of seasonal forcing for a predator–
prey model (Taylor et al., 2012) and the study of a model for
immune priming (Best, 2013).

Other approaches to analysing such models include resonance
theory (Greenman et al., 2004) or perturbation methods (King and
Schaffer, 1999, 2001) which have been used elsewhere successfully
in models relevant for epidemiology, ecology and demography
(Schaffer et al., 2001; Greenman and Norman, 2007; Greenman
and Pasour, 2011; Upadhyay and Iyengar, 2005; Choisy et al., 2006;
He and Earn, 2007). In the context of infectious diseases, Earn et al.
(2000) demonstrated that transitions from predictable to unpre-
dictable, and potentially chaotic, behaviour for childhood diseases
such as measles may arise naturally from changes in birth rates
and/or vaccination schedules once seasonal fluctuations in the rate
of infection were accounted for. In all these works, parameters that
regulate the strength and periodicity of seasonal variations are
shown to be responsible for the birth of complex phenomena of
interest from both the biological and mathematical point of view,
including multi-year cycles, chaotic dynamics, intermittent and
catastrophic behaviors and multistable states.

In recent work, we used a combination of bifurcation analysis
and numerical simulation to study the dynamics of a previously
published model of pertussis infection (Lavine et al., 2011) in
which protection following infection is not lifelong and immunity
may be ‘boosted’ due to continual circulation of disease (Dafilis
et al., 2012). Where Lavine et al. (2011) focussed on the role of
vaccination in inducing undamped oscillatory dynamics, we
demonstrated that a declining in the birth-rate, as observed in
Western populations over the past century, was capable of
transitioning the system from one characterised by endemic
steady-state dynamics to one in which sustained (undamped)
oscillations in disease prevalence characterised the system. Our
and Lavine et al. (2011)'s results were derived in the absence of
any seasonal fluctuations in the transmissibility of the pathogen.

In this paper we extend the model to include seasonal forcing
and investigate the model's behaviour using bifurcation analysis and
numerical simulation. Particular attention is devoted to understand-
ing how changes in the strength of immune boosting and the
intensity of seasonal forcing elicit different behaviour, and how such
behaviour varies with the assumed birth-rate for the population.

The paper is organized as follows. In Section 2 we introduce
the model of transmission. A discussion of the analytic and

computational techniques used for our analysis is provided in
Section 3. Section 4 presents the main findings. We discuss the
epidemiological consequences of our study in Section 5.

2. The SIRWS model with demography and immune boosting

Extending the classic Susceptible–Infectious–Removed mode of
disease dynamics, Lavine et al. (2011) introduced the ‘SIRWS’
model in which the population is separated into those who are
susceptible to infection (S), those infected and infectious (I), those
recovered, no longer infectious and immune to re-infection (R) and
those whose immunity has waned sufficiently such that exposure,
while not leading to productive infection, provides a ‘boost’ to
immunity (W). Fig. 1 shows the population compartments and
associated flows. Assuming mass action dynamics, the correspond-
ing equations for the model are

dS
dt

¼ �βðtÞISþ2κWþξð1�SÞ ð1aÞ

dI
dt

¼ βðtÞIS�γI�ξI ð1bÞ

dR
dt

¼ γI�2κRþνβðtÞIW�ξR ð1cÞ

dW
dt

¼ 2κR�2κW�νβðtÞIW�ξW ð1dÞ

where βðtÞ ¼ β0ð1þη cos ð2πtÞÞ is the annually forced transmission
coefficient, parameterised by a baseline value β0 and a seasonal
strength η, 1=γ is the average duration of infectiousness (in the
absence of death), 1=κ is the average duration of protection (in the
absence of immune boosting and death), ν is the factor describing
the relevant strength of immune boosting ðW-RÞ compared
to infection (S-I) and ξ is the birth rate for the population. We
assume a constant population size and no infection-induced
mortality, and so the death-rate is also ξ.

The key feature of the model is the second non-linear term for
the transition from W-R. This term is directly proportional to the
force-of-infection βI and allows for the overall effective duration of
immunity (the expected time to transition from R to S) to reduce
as the prevalence of infection (and so disease, I) drops. Critically,
the constant of proportionality, ν, may be greater than or less than
one. As in earlier works (Lavine et al., 2011; Dafilis et al., 2012),
ν41 implies that an exposure insufficient to initiate productive
infection in a susceptible individual may nonetheless be sufficient to
boost immunity. A more detailed description of the basic mathe-
matical properties of the model may be found in Dafilis et al.
(2012).

To undertake the present study on the role of seasonal-forcing
(η) and its interaction with the strength of immune boosting (ν)
and the population birth-rate (ξ), we must choose a set of
biologically realistic parameters with which to simulate the model.
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Fig. 1. A schematic diagram of the SIRWS model with demography and immune
boosting. In the absence of immune boosting (ν¼0), the system reduces to the
classic SIR(S) model, but with the return flow from R to S split into two stages. The
strength of immune boosting may be less than (νo1) or greater than (ν41) the
force of infection βI. The inclusion of this extra feedback loop in the model has
fundamental consequences for the dynamical properties of the system (Dafilis
et al., 2012).
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