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H I G H L I G H T S

� We propose a new stochastic individual-based scheme to predator–prey systems.
� Our scheme can produce stable Turing patterns.
� Our scheme can work as a logical bridge with the reaction–diffusion theory.
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a b s t r a c t

Stable territory formation is frequently observed in ecology. Until now, only the reaction–diffusion
scheme has successfully produced stable patterns in the predator–prey system. However, it is a density-
based scheme and in principle it cannot be used to derive a comprehensive understanding from a mean-
field scheme. The application of our new stochastic individual-based scheme to predator–prey systems
successfully produced stable patterns such as net, stripe, and lattice patterns for the first time. This study
clearly shows that non-interacting time is an important factor in stable pattern formation. Specifically, of
high importance is the existence of finite time to build the appetites of predators. In some cases, extreme
increases of the appetites of predators lead to chaotic changes of the population, which are similar to the
locust outbreak in Africa.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is a matter of life and death for any biological organism to
construct a stable body and maintain it with only small fluctua-
tions. Since the pioneering study by Turing (1952), his idea has
been successfully applied to various systems using the reaction–
diffusion scheme, which is a mathematical generalization of
Turing's idea by Meinhardt (Koch and Meinhardt, 1994). However,
there were two problems in Turing's condition for stable pattern
formation. First, it is not a necessary and sufficient condition for
the stable pattern formation. Namely, it does not guarantee stable
pattern formation completely. Second, the reaction–diffusion
scheme is a density-based formalism. Therefore, in principle, the
details of individual interactions cannot be derived from any
numerical investigation. Thus, various individual-based schemes
have been proposed (Grimm and Railsback, 2005; De Angelis and
Mooij, 2005). For simulation studies, lattice models or patch-panel
models are often adopted to introduce the migration of animals

(Taninaka, 1988; Satulovsky and Tome, 1994; Satoh, 1989; Carneiro
and Charret, 2007; Wilson et al., 1993; Gurney and Veitch, 2000;
Hosseini, 2006).

To clarify the microscopic mechanism of pattern formation, in
this letter we will focus on the predator–prey system (Nagano,
2002; Murray, 2001). An advantage of this system is that the
interaction between individuals can be defined without any
ambiguity. Recently, we succeeded in the construction of phase
diagram in the predator–prey system by adopting a combination
of the population density dynamics and the reaction–diffusion
theory (Nagano and Maeda, 2012). Using this system, any micro-
scopic study can be verified macroscopically.

In attempting to resolve the fundamental problem of the reac-
tion–diffusion scheme, we developed a stochastic individual-based
model and applied it to the predator–prey system (Yokoyama et al.,
2008); however, we could not reproduce stable patterns. On the
other hand, our reaction–diffusion model study confirmed the
existence of stable patterns in the predator–prey system. Further-
more, this study highlighted the missing components of our
stochastic model. Thus, herein, we revised our previous stochastic
model and reproduced stable lattice, stripe, and net patterns.
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We also show that the existence of non-interacting time is a very
important factor for stable pattern formation.

2. Stochastic nature of the diffusion constant

When the diffusion constant is provided, one can derive infor-
mation on density development as a function of time by solving

the corresponding diffusion equation. Although this is a well
established method, density itself is a macroscopic concept and
in principle individual motion is not definitively known. To fill in
this fundamental gap, recently we proposed the following sto-
chastic method (Yokoyama et al., 2008). Assuming that variance
ðs2Þ is proportional to the diffusion constant, we generated
random numbers that exhibited a two-dimensional bivariate
normal distribution with variance s2 using the Box–Muller trans-
formation method (Box and Muller, 1958). Then, the individual
movement was determined from the randomly generated num-
bers. The basis of this scheme is the similarity of the analytic
solution of the diffusion equation and the normal distribution
function with variance s2. Therefore, we can specify stochastic
individual movement when the standard deviation s is given.

3. Computational scheme

Our computational methodology is as follows (See ODD;
Grimm et al., 2010). First, we distributed Npred

0 predators and
Nprey
0 prey randomly in the two dimensional Lx � Ly array with

the periodic boundary condition. To model animal migration, we
generated random numbers that exhibited a two-dimensional
bivariate normal distribution with variance s2. Predators and prey
then move stochastically, driven by randomly generated numbers
with the standard deviations spred and sprey. For simplicity, the
exclusion principle was adopted so that only one animal can
occupy a given cell at any one time.

Fig. 2. The effect of tpredreprod in pattern formation (See Supplementary material for Fig. 2c). Two-dimensional predator and prey patterns when the time step¼5000. As in Fig. 1,
when tstarvpred ¼ 5 and the value of tpredreprod is increased, we encounter (a) Domain IIa, (b) Domain IIb, and (c) and (d) Domain IIIb. Red points and green points indicate predators
and prey, respectively. White points show vacant cells. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
article.)

Fig. 1. Phase diagram of the predator prey system when spred ¼ 5, sprey ¼ 2,
tlifeprey ¼ 10, and treprodprey ¼ 3. There are five distinct domains. Domain I is the extinction
domain. Domain II is the chaotic domain. This domain is divided further into two
subdomains, IIa and IIb, depending on the time development of the total popula-
tions. Domain III is the stable domain, which is further divided into three
subdomains, IIIa, IIIb, and IIIc, depending on the degree of fluctuations. In Domain
IV, both predators and prey die out. Domain V is the nonbiological area.
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