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H I G H L I G H T S

� Introduce stochastic model of growing domain on which particles are situated.
� Derive coefficients of Fokker–Planck equation (FPE) describing particle density.
� Incorporate elemental death to model domain shrinkage and derive appropriate FPE.
� Outline computer-assisted methodology for approximating the coefficients of the FPE.
� Provide numerical simulations which verify our findings and demonstrate good agreement.
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a b s t r a c t

The incorporation of domain growth into stochastic models of biological processes is of increasing
interest to mathematical modellers and biologists alike. In many situations, especially in developmental
biology, the growth of the underlying tissue domain plays an important role in the redistribution of
particles (be they cells or molecules) which may move and react atop the domain. Although such
processes have largely been modelled using deterministic, continuum models there is an increasing
appetite for individual-based stochastic models which can capture the fine details of the biological
movement processes which are being elucidated by modern experimental techniques, and also
incorporate the inherent stochasticity of such systems.

In this work we study a simple stochastic model of domain growth. From a basic version of this
model, Hywood et al. (2013) were able to derive a Fokker–Plank equation (FPE) (in this case an
advection–diffusion partial differential equation on a growing domain) which describes the evolution of
the probability density of some tracer particles on the domain. We extend their work so that a variety of
different domain growth mechanisms can be incorporated and demonstrate a good agreement between
the mean tracer density and the solution of the FPE in each case. In addition we incorporate domain
shrinkage (via element death) into our individual-level model and demonstrate that we are able to
derive coefficients for the FPE in this case as well. For situations in which the drift and diffusion
coefficients are not readily available we introduce a numerical coefficient estimation approach and
demonstrate the accuracy of this approach by comparing it with situations in which an analytical
solution is obtainable.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are many biological scenarios in which tissue growth plays
a significant role in the distribution of migrating cells. Embryogenesis
is one such process which provides numerous demonstrations of the
importance of domain growth to the final positions of various cell
types. At the same time as the embryo is growing the organisation of

complex biological superstructures (such as limbs) is being orche-
strated (Chevallier et al., 1977), therefore it is vital that the processes
of cell migration and domain growth are coordinated with each other
in order to achieve the correct results (Wolpert, 1969). For example,
McLennan et al. (2012) examined how a subpopulation of neural
crest cells travelled long distances and responded to growth of the
underlying tissue. They found not only that cells are carried by the
tissue growth but also that cellular velocity profiles correspond to the
logistic tissue growth.

There have been several theoretical studies of the interplay
between domain growth and pattern formation in both deterministic
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(Painter et al., 1999; Crampin et al., 2002a, 1999, 2002b; Crampin and
Maini, 2001a; Kulesa et al., 1996) and stochastic (Woolley et al., 2011)
regimes. Others investigations have specifically focussed on the
targeted migration of cells on growing domains and have again
covered both the deterministic (Landman et al., 2003; Simpson et al.,
2006) and stochastic (Binder et al., 2008; Binder and Landman, 2009)
scenarios and indeed mechanisms in order to segue between the two
(Baker et al., 2010; Yates et al., 2012). The two types of modelling
regime traditionally focus on different scales, with stochastic models
able to incorporate experimental scale details and the inherent
noisiness of the biological system, while deterministic, continuum
models tend to focus on the macroscale, ensemble properties and
give a clear overview of the behaviour of the system. A multiscale
understanding of the complex processes involved in cell migration
can be achieved by linking these two modelling regimes together in
an ‘equivalence framework’, which provides insight into the interplay
between the individual-level and population-level models. Employ-
ing such an equivalence framework allows us to make use of either
modelling regime in order to investigate the relevant properties of
the system.

Recently Hywood et al. (2013) have initiated such a framework
by analysing a discrete, stochastic, on-lattice domain growth
model in which the domain is made up of elements which may
proliferate independently and with equal probability. Using the
infinitesimal moments of the underlying stochastic process
(Gillespie, 1992; Karlin and Taylor, 1981) the authors were able
to derive the coefficients of a Fokker–Planck equation (FPE) which
approximates the spatio-temporal evolution of the expected
occupancy of the lattice sites in the case of an exponentially
growing domain. The work of Hywood et al. (2013) is itself an
extension of the work of Binder and Landman (2009) who
consider a similar process on a deterministically growing domain.

In Section 2 we review the work of Hywood et al. (2013) and
describe how it might be extended to include time-dependent
proliferation rates and to incorporate elemental death. Using this
reformulated model we are able to extend this equivalence frame-
work, in Section 3, to cases where the domain does not grow
exponentially in the mean-field. By deriving the infinitesimal
moments of the stochastic process which underlies domain growth
we are able to incorporate several biologically-motivated types of
domain growth including exponential, linear and logistic. Importantly,
in Section 4 we also consider the case in which individual elements
are allowed to die as well as proliferate. We derive the drift and
diffusion coefficients of the FPE which describes the expected marker
density on the growing/contracting domain. Not only does this allow
for the more realistic representation of domain growth processes in
which apoptosis may occur, but it also enables the representation of
domain shrinkage which may be important for biological processes
such as wound healing (Greenhalgh, 1998; Grinnell et al., 1999). In
each situation we confirm our theoretical findings by comparisons of
the mean tracer density (over many realisations of the individual-
level model) to numerical solutions of the derived FPEs.

There are situations in which the drift and diffusion coefficients
of the underlying stochastic process are not readily available.
In order to deal with these situations, in Section 5, we present a
Fokker–Plank coefficient estimation approach (Yates et al., 2009)
which is reminiscent of the equation-free technique (Kevrekidis
et al., 2003). We utilise this approach in order to find computa-
tionally the coefficients of the assumed FPE and we verify our
findings through further numerical simulations.

We conclude in Section 6 with a brief discussion summarising
our findings and suggesting areas into which this work may be
extended.

2. An equivalence framework

In this section we introduce the individual-based model and
the continuum representation between which we hope to derive
an equivalence framework. We extend the basic individual-based
model to incorporate time-dependent proliferation rates and
elemental death and present the FPE which we expect to describe
the mean-field tracer density.

2.1. The individual-based model

We begin by introducing the basic stochastic model upon
which the rest of the results of this paper are based. Consider a
one-dimensional domain made up initially of N0 contiguous
elements each of length Δ. We incorporate growth and shrinkage
into this individual-level model by allowing these elements to
undergo ‘proliferation events’ and ‘death events’ which are analo-
gous to biological cell division and cell death events.1 In contin-
uous time a domain element is chosen, uniformly among all the
elements, to proliferate or to die with exponentially distributed
waiting time. We extend the work of Hywood et al. (2013) by
introducing time-dependence of the parameter, b(t), of the expo-
nential waiting time distribution for birth events. This allows us to
incorporate a variety of different types of domain growth in
addition to the standard exponential domain growth resultant
from a time-independent waiting time distribution. In addition we
incorporate the possibility of a time-dependent rate of death, d(t)
into the model.

If domain element i is chosen to proliferate then it does so by
pushing all the elements to its right (including itself) a distance Δ
to the right in order to make room for an identical daughter
element which is placed in its original position (see Fig. 1).
If element i is selected to die then it is removed from the lattice
and all the elements to its right shift Δ to the left in order to fill the

Fig. 1. Examples of growth and division events. Domain elements are white boxes and tracer particles are represented by smaller red boxes atop particular ‘marked’
elements. In each subfigure the top configuration shows a domain before a growth event and the bottom a domain configuration after a growth event. (a) An unmarked
element is chosen to divide. It does so by pushing itself and the intervals to its right one element length, Δ. Tracer particles move with the elements and a new element
(hatched) is inserted in the empty space. (b) A marked element is selected to divide. It undergoes the same movement procedure as for the unmarked element taking its
tracer particle with it. Again a new element (hatched) is inserted in the vacant space. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

1 We note that biological cells do not instantaneously disappear, grow or
divide, nor do they have exponentially distributed waiting times between divisions.
These are, however, mathematical idealisations that we have made in order to
render the model tractable.
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