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H I G H L I G H T S

� We complete the analysis of the excitatory integrate and fire neuronal networks.
� We have increased the knowledge about NNLIF model, including the refractory state.
� We have extended the blow-up results for a deterministic value firing potential.
� Neurons in refractory state can produce more stationary states than without it.
� For a random discharge potential spontaneous activity arises.
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a b s t r a c t

The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-
consistent description of neural networks and gives a rule to determine the probability to find a neuron at
the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions,
very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully
excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others;
thus increases the activity and consequently the discharge rate of the full network.

In order to better understand the details of the phenomena and show that the equation is more complex
and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the
case when neurons, after firing, enter a refractory state for a given period of time. We also show that
spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in
regimes where blow-up occurs for a fixed value of VF.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Network Noisy Leaky Integrate and Fire (NNLIF in short)
model is certainly one of the simplest self-contained mean field
equation for neural networks. It describes, at time t, the probability
pðv; tÞ to find a neuron at a voltage v, assuming each individual
neuron follows a simple integrate and fire dynamics and the coupling
changes the current. Integrate and Fire models, for a single neuron or
a population of neurons, with or without noise, have been used very
widely (Abbott and Vreeswijk, 1993; Brunel and Hakim, 1999; Renart
et al., 2004; Touboul, 2009; Newhall et al., 2010a, 2010b), compared

to experimental data (Brette and Gerstner, 2005; Rossant et al., 2011)
and qualitative properties have been studied (Brunel, 2000; Brunel
and Hakim, 1999; Touboul, 2008; Dumont and Henry, 2013b). Many
references can be found in surveys and books, see Gerstner and
Kistler (2002), Tuckwell (1988), Guillamon (2004) among others.
However its mathematical structure is still poorly understood and
very few results are available concerning its solutions. For instance,
very recent results are large time existence for the inhibitory case
(Carrillo et al., 2013), short time existence of smooth solutions for the
excitatory case (Delarue et al., 2012) and global existence for the
model when firing neurons induce finite jumps (Dumont and Henry,
2013a). Another striking mathematical property is that for fully
excitatory networks, the system blows-up in finite time; this holds
for any initial data for a large enough network connectivity and for
any connectivity if the initial data is concentrated enough near the
firing potential denoted by VF in the sequel, see Cáceres et al. (2011a).
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This also remains true when the discrete nature of interactions is
kept (Dumont and Henry, 2013b). The intuitive explanation is that
each firing neuron induces a discharge of the others; thus increases
the activity and consequently the discharge rate of the full network.
Finally, synchronous states, where the firing rate does not tend
asymptotically to constant in time but network produces sponta-
neous activity, have also been observed in several neuronal networks
models: systems of coupled nonlinear oscillators (Abbott and
Vreeswijk, 1993), inhibitory NNLIF with synaptic integration (
Brunel and Hakim, 1999), excitatory–inhibitory coupled NNLIF
(Brunel, 2000), Fokker–Planck equations for uncoupled neurons
(Newhall et al., 2010a, 2010b), kinetic models (Rangan et al., 2008;
Cáceres et al., 2011b) and elapsed time models (Pakdaman et al.,
2013).

In order to better understand the details of the phenomena
observed in NNLIF, we analyze a model with a refractory state. The
refractory state takes into account the fact that neurons during the
refractory period do not respond on stimuli. We describe the
influence of that period coupling the NNLIF equation, considered
in Cáceres et al. (2011a), with a ODE for the refractory state:

∂p
∂t

ðv; tÞþ ∂
∂v

½hðv;NðtÞÞpðv; tÞ��aðNðtÞÞ∂
2p
∂v2

ðv; tÞ ¼ RðtÞ
τ

δðv�VRÞ; vrVF ;

dRðtÞ
dt

¼NðtÞ�RðtÞ
τ

;

NðtÞ≔�aðNðtÞÞ∂p
∂v

ðVF ; tÞZ0;

pðVF ; tÞ ¼ 0; pð�1; tÞ ¼ 0; pðv;0Þ ¼ p0ðvÞZ0; Rð0Þ ¼ R040:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

In this system, pðv; tÞ represents the density of active neurons
(those which respond on stimuli) in the network at voltage
vA ð�1;VF Þ, R(t) denotes the probability density to find a neuron
in the refractory state and N(t) is the flux of firing neurons. The
presentation of the model ends up with the description of the
parameters:

� VR and VF are the reset and the firing potentials, respectively.
As in Cáceres et al. (2011a) voltage variable is translated in
terms of the resting potential and the external stimuli. In this
sense, we can choose v¼0 for the relaxation potential (see
hðv;NÞ below).

� τ measures the mean duration of the refractory period.
� hðv;NÞ is the drift coefficient and usually will be hðv;NÞ ¼

�vþbN.
� b represents the connectivity of the network: b40 for excita-

tory networks and bo0 for inhibitory.
� a(N) denotes the activity dependant noise; it is usual to take

the form aðNÞ ¼ a0þa1N and here we just assume

aðNÞZam40: ð2Þ

An important and deep literature has been devoted to the derivation
of mean field equations as (1) for large systems of coupled neurons,
see Tuckwell (1988), Guillamon (2004), Rangan et al. (2008), Delarue
et al. (2012), and Pakdaman et al. (2010), for instance.

The first property of the system (1) that one readily checks is
the conservation of the total number of neurons, that is

RðtÞþ
Z VF

�1
pðv; tÞ dv¼ R0þ

Z VF

�1
p0ðvÞ dv¼ 1: ð3Þ

Brunel (2000) presents a different model to depict the presence
of refractory state, he considers

RðtÞ ¼
Z t

t� τ
NðsÞ ds

and couple it with the equation for the active neurons in the
network written as

∂p
∂t
ðv; tÞþ ∂

∂v
½hðv;NðtÞÞpðv; tÞ��aðNðtÞÞ∂

2p
∂v2

ðv; tÞ ¼Nðt�τÞδðv�VRÞ;
vrVF :

The conservation property (3) still holds since we have

d
dt

Z
pðv; tÞ dvþRðtÞ

� �
¼ 0;

at least if N is properly extended for times tA ð�τ;0Þ. This latter
model considered in Brunel (2000) and the system (1) are
particular cases of a general version

∂p
∂t

ðv; tÞþ ∂
∂v

½hðv;NðtÞÞpðv; tÞ��aðNðtÞÞ∂
2p
∂v2

ðv; tÞ ¼MðtÞδðv�VRÞ
dRðtÞ
dt

¼NðtÞ�MðtÞ:

8>><
>>:

ð4Þ
We recover the model in Brunel (2000) with the choice MðtÞ ¼
Nðt�τÞ and the model (1) with MðtÞ ¼ RðtÞ=τ. Our results and
proofs below also hold within the more general setting (4) and
therefore remain true for the Brunel's model.

We consider throughout this paper weak solutions which definition
is recalled in Section 2. Our main result is that weak solutions to (1)
with b40 blow-up in the same condition than when the refractory
state is ignored; this result is proved in Section 3. Then we study the
existence and multiplicity of steady states in Section 4, both with a
general result and some numerical illustrations (see Section 7). For
br0 there is a unique steady state and we can show that the linear
equation, that is b¼0, comes with a natural energy which explains the
long time relaxation to the unique steady state (Section 5).

Self-sustained oscillations can also be obtained for the excita-
tory NNLIF when the deterministic value VF is changed to a
random discharge potential. We study two examples of discharge
laws and prove in Section 6 that solutions are a priori globally
bounded. Numerical illustrations are finally given in Section 7.
Section 8 summarizes the paper and gives conclusions on our
results about the NNLIF with refractory state; it also presents
several open questions.

2. Notation and definitions

In this section we present the notations that are used through-
out this paper and the definition of weak solutions of (1). We recall
some usual notations: LpðΩÞ with 1rpo1 is the space of
functions such that f p is integrable in Ω, L1 represents the space
of bounded functions in Ω and C1ðΩÞ denotes the space of
infinitely differentiable functions in Ω.

Definition 2.1. Let pAL1ðRþ ; L1þ ð�1;VF ÞÞ, NAL1loc;þ ðRþ Þ and
RAL1þ ðRþ Þ. We say that p;N;Rð Þ is a weak solution of (1) if for
any test function ϕðv; tÞAC1ðð�1;VF � � Rþ Þ such that ∂2ϕ=∂v2,
v∂ϕ=∂vAL1ðð�1;VF Þ � Rþ Þ we haveZ T

0

Z VF

�1
pðv; tÞ �∂ϕ

∂t
�hðv;NðtÞÞ∂ϕ

∂v
�aðNðtÞÞ∂

2ϕ
∂v2

� �
dv dt

¼
Z T

0

RðtÞ
τ

ϕðVR; tÞ�NðtÞϕðVF ; tÞ
� �

dt

þ
Z VF

�1
p0ðvÞϕðv;0Þ dv�

Z VF

�1
pðv; TÞϕðv; TÞ dv ð5Þ

and R is a solution of the ODE

dRðtÞ
dt

¼NðtÞ�RðtÞ
τ

:
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