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H I G H L I G H T S

� Noise in biological systems is stu-
died by discrete stochastic differen-
tial equations.

� Biological systems are modeled by
birth-death type systems with or
without a buffer.

� Noise is described by the variance of
the number of molecules at constant
mean.

� Noise is increased or decreased
according to the type of system/
buffer correlation.

� In general noise is reduced upon
connecting positively correlated
birth-death systems.
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a b s t r a c t

Cell systems consist of a huge number of various molecules that display specific patterns of interactions, which
have a determining influence on the cell's functioning. In general, such complexity is seen to increase with the
complexity of the organism, with a concomitant increase of the accuracy and specificity of the cellular
processes. The question thus arises how the complexification of systems –modeled here by simple interacting
birth-death type processes – can lead to a reduction of the noise – described by the variance of the number of
molecules. To gain understanding of this issue, we investigated the difference between a single system
containing molecules that are produced and degraded, and the same system –with the same average number
of molecules – connected to a buffer. We modeled these systems using Itō stochastic differential equations in
discrete time, as they allow straightforward analytical developments. In general, when the molecules in the
system and the buffer are positively correlated, the variance on the number of molecules in the system is found
to decrease compared to the equivalent system without a buffer. Only buffers that are too noisy themselves
tend to increase the noise in the main system. We tested this result on two model cases, in which the system
and the buffer contain proteins in their active and inactive state, or protein monomers and homodimers. We
found that in the second test case, where the interconversion terms are non-linear in the number of molecules,
the noise reduction is much more pronounced; it reaches up to 20% reduction of the Fano factor with the
parameter values tested in numerical simulations on an unperturbed birth-death model. We extended our
analysis to two arbitrary interconnected systems, and found that the sum of the noise levels in the two systems
generally decreases upon interconnection if the molecules they contain are positively correlated.
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1. Introduction

Biological systems involve large amounts of different molecules
that are closely packed in a relatively small area—the cell and the
intercellular medium. These molecules are located in some specific
regions of space—inside or outside the cell, inside or outside the
nucleus, etc—or move from one region to another. They interact in
a specific manner to form transient or permanent complexes that
perform the biological activity. These highly complex systems are
moreover very sensitive to the environment (presence of other
molecules) and external conditions (temperature, pH, salt concentra-
tion, etc). It is obviously impossible to take all these degrees of
freedom into account. Therefore deterministic models can only
reproduce the average of variables involved in biological processes.
To gain insight into the actual time evolution of an individual process,
stochastic models must be used, such as stochastic differential
equations (SDE) or the master equation formalism.

In spite of their highly complex and stochastic behavior,
biological systems work very precisely and efficiently and perform
their activity quite specifically, with a surprisingly low level of
error. A striking observation is that while the overall complexity of
the cellular processes (for example the transcription machinery)
tends to increase with the complexity of the organisms (for
example prokaryotes versus higher eukaryotes), the specificity
and accuracy of these processes appear in general to increase too.
In other words, the noise at the molecular and cellular levels tends
to decrease when the number of degrees of freedom and thus the
complexity of the organism increases.

Note however that this overall tendency is not always true:
some noise is not detrimental to biological systems. Sometimes it
can create the diversity needed for cellular adaptation to, for
example, different environments thereby generating new gene
expression patterns or phenotypes (Samoilov et al., 2006; Thattai
and van Oudenaarden, 2004). Also, cell differentiation has been
suggested to be noise-driven (Hoffmann et al., 2008; Forde, 2009).

Intrinsic noise reduction in biological systems has been inves-
tigated earlier by combinations of analytical and numerical
approaches. In particular, in the framework of gene expression
networks, it has been shown that negative feedback can drama-
tically reduce the variability in gene expression (Gardner and
Collins, 2000; Becskei and Serrano, 2000; Paulsson, 2004; Yi et al.,
2008). Actually, negative translational feedback appears to have a
much greater efficiency at reducing stochasticity than negative
transcriptional feedback (Swain, 2004). Also, complex promotor
architectures are suggested to make gene expression regulation
more precise (Müller and Stelling, 2009). In contrast, in a genetic
switch model consisting of a single gene with positive autoregula-
tion, larger numbers of activator sites appear to lead to less
accurate delays (Albert and Rooman, 2012); the effect of coopera-
tive binding of activators has also been studied and the level of
noise seems to increase with the interaction energy (Gutierrez et al.,
2009). Furthermore, cell–cell communication appears to lead in
some (but not all) cases to decreased noise, due to the summation
of the effects of all cells of the population (Tanouchi et al., 2008;
Weber and Buceta, 2011; Koseska et al., 2009). Finally, at the protein
level, noise control is achieved through oligomerization (Ghim and
Almaas, 2008; Bundschuh et al., 2003) or through the interaction
between proteins and background molecules (Morishita and Aihara,
2004).

To gain understanding of these issues, which are central for
elucidating the basis of biological evolution but also for engineer-
ing novel cells in the framework of synthetic biology, we studied
analytically a simple system containing molecules that are pro-
duced and degraded and compared it with the slightly more
complex system in which the original system is connected to a
second system—called buffer. The system-buffer pair may be

viewed as representing molecules that go from one region to the
other, for example, from the cytoplasm to the nucleus and back.
Also, molecules in the main system can be considered as being in
their inactive state and those in the buffer in their active state due
to their binding to a ligand. Alternatively, the molecules in the
main buffer can be protein monomers and those in the buffer
homomultimers.

Our goal here is to compare the variance of the number of
molecules—that represents the noise—of a system with and with-
out a buffer. We would like to emphasize that this comparison is
performed for an equal average number of molecules in the main
system (excluding the buffer). We indeed assume that a biological
system needs a fixed mean number of molecules to function
correctly, whether or not a buffer is present.

We modeled the systems using discrete-time stochastic differen-
tial equations (SDE), in which the stochasticity is reproduced through
Wiener processes. This formalism has the advantage of allowing easy
analytical developments, which allow gaining basic understanding of
the reasons underlying the noise reduction upon increase of com-
plexity. For the sake of completeness, the link between this type of
formalism and the Fokker–Planck equation and with the master
equation is recalled explicitly. This clarifies the significance of the
parameters that enter in the two approaches.

2. Stochastic system without a buffer

Consider first a simple biological system consisting of mole-
cules of type ~y which are produced at some rate ~P and eliminated
at some other rate ~D (see Fig. 1(a)). These molecules may for
example be viewed as proteins that enter the system after
translation from RNA and leave it due to degradation, transforma-
tion or interaction with other biomolecules. They may also be seen
as proteins that enter and leave a given cell or cell compartment.
As biological processes are inherently stochastic, the amount of
molecules, denoted by ~Y , and their production and degradation
rates are taken as stochastic processes, defined on some prob-
ability space and indexed by a parameter t that represents the time
and varies over the interval [0, T]. A natural model for the time
evolution of such a system consists of an Itō stochastic differential
equation in continuous time of the following form (see for
example Allen, 2007):

d ~Y ðtÞ ¼ d ~P ðtÞ�d ~DðtÞ; ð1Þ
where we assume that the production and degradation rates are
each expressed as the sum of a deterministic term with drift
coefficient denoted by pðmÞ and dðmÞ, respectively, and of a stochas-
tic term with diffusion coefficient

ffiffiffiffiffiffiffi
pðvÞ

p
and

ffiffiffiffiffiffiffi
dðvÞ

p
(where the

superscripts m and v stand for “mean” and “variance”):

d ~P ðtÞ ¼ ~pðmÞðt; ~Y Þ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pðvÞðt; ~Y Þ

q
d ~ηðtÞ;

d ~DðtÞ ¼ ~d
ðmÞðt; ~Y Þ dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d
ðvÞðt; ~Y Þ

q
d ~χ ðtÞ; ð2Þ

~ηðtÞ and ~χ ðtÞ stand for two independent Wiener processes.
Remember that, by definition, ~ηð0Þ ¼ 0 and ~χ ð0Þ ¼ 0, and that both
~ηðtÞ� ~ηðt0Þ and ~χ ðtÞ� ~χ ðt0Þ follow a N ð0; t�t0Þ distribution for all
t; t0. Note also that the Wiener process has continuous-valued

Fig. 1. Representation of a system without a buffer ðaÞ, and with a buffer ðbÞ.
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