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H I G H L I G H T S

� FEA was used to study structural strength and bending predictability in long bones.
� Load carrying capacity can be compromised by bone curvature.
� Load carrying capacity can be also be increased by bone curvature.
� Curvature does increase bending predictability.
� Probability density functions can be generated for bending predictability.
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a b s t r a c t

Most long limb bones in terrestrial mammals exhibit a longitudinal curvature and have been found to be
loaded in bending. Bone curvature poses a paradox in terms of the mechanical function of limb bones,
for many believe the curvature in these bones increases bending stress, potentially reducing the bone's
load carrying capacity (i.e., its mechanical strength). The aim of this study is to investigate the role of
longitudinal bone curvature in the design of limb bones. In particular, it has been hypothesized that bone
curvature results in a trade-off between the bone's mechanical strength and its bending predictability.
We employed finite element analysis (FEA) of abstract and realistic human femora to address this issue.
Geometrically simplified human femur models with different curvatures were developed and analyzed
with a commercial FEA tool to examine how curvature affects the bone's bending predictability and load
carrying capacity. Results were post-processed to yield probability density functions (PDFs) describing
the circumferential location of maximum equivalent stress for various curvatures in order to assess
bending predictability. To validate our findings, a finite element model was built from a CT scan of a real
human femur and compared to the simplified femur model. We found general agreement in trends but
some quantitative differences most likely due to the geometric differences between the digitally
reconstructed and the simplified finite element models. As hypothesized by others, our results support
the hypothesis that bone curvature can increase bending predictability, but at the expense of bone
strength.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a classic study, John Bertram and Andrew Biewener examined
the mechanics of bone curvature in the design of the long (i.e., limb)
bones of mammals based on elementary analytical expressions
(Bertram and Biewener 1988). They noted that although a distinct
longitudinal curvature was ubiquitous in mammals, a straight bone
should be a more efficient design because the maximummechanical
strength of a straight bone should be higher. Bertram and Biewener

hypothesized that the benefit of bone curvature is that it makes
more predictable the manner in which the bone bends. Bending
predictability was defined by Bertram and Biewener as the prob-
ability of the bone to bend in a certain direction, thereby yielding
consistent stress patterns within the bone. In other words, curvature
restricts the range of bending directions when a bone is subjected to
loads in variable directions. In contrast, a straight bone subjected to
the same loads will have no restriction on the range of its bending
direction and hence will have no bending predictability (Bertram
and Biewener, 1988). Although other explanations for bone curva-
ture have been proposed (Bertram and Biewener, 1988; Yamanaka
et al., 2005; Taylor et al., 1996; Rubin and Lanyon, 1982; Biewener,
1983; Biewener, 1986; Frost, 1979; Lanyon, 1980), this study focuses
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on the predictability hypothesis. Predictions of this hypothesis are
tested using finite element analysis (FEA), a modeling method
widely employed in engineering that can be used to examine how
objects of complex design respond to load. Here, we use FEA to
determine how bone curvature affects its bending predictability,
as well as its strength, and compare these results to those obtained
using the analytical model employed by Bertram and Biewener.
A review of Bertram and Biewener's analytical model is first presented.

1.1. The Bertram and Biewener model revisited

Fig. 1 shows the geometry of the bone used for the derivation.
Bertram and Biewener and other researchers (Bertram and
Biewener, 1988; Yamanaka et al., 2005; Biewener, 1983) in the
past have used the term bone curvature, c, to define what we call
in Fig. 1 the bone's longitudinal shape eccentricity, els, in this study.
We propose this change in terminology since curvature is math-
ematically defined as the reciprocal of the radius of curvature, and
the parameter els shown in Fig. 1 is clearly not the reciprocal of the
radius of curvature of the bone. The bone's longitudinal shape
eccentricity, els, is not to be confused with the traditional defini-
tion of a bone's shape eccentricity which is based on its cross
section; this should be correctly termed the bone's cross-sectional
shape eccentricity. In general, long bones have two eccentricities

in shape: in the longitudinal direction and in cross-section. The
former refers to the deviation of the longitudinal axis of the bone
from a straight line, while the latter refers to the deviation of the
bone's cross section from a circular shape. The mathematical
relationship between a true bone curvature, c; and its radius of
curvature, Rc with its longitudinal shape eccentricity, els; for a bone
of circular cross section is given by:

Rc

R
¼ 1
cR

¼ 4ðels=RÞ2þðL=RÞ2
8ðels=RÞ

: ð1Þ

where L is the length of the bone and R is the radius of the bone's
section. In Fig. 2 we plot the radius of curvature of bone and bone's
true curvature against the longitudinal shape eccentricity of the
bone using Eq. (1) for a range of longitudinal shape eccentricities
found in long limb bones of humans (Schonning et al., 2009). The
radius of curvature of the bone is inversely proportional to the
longitudinal shape eccentricity of the bone, and the true bone
curvature increases monotonically with the longitudinal shape
eccentricity. In Fig. 1 we also define the eccentricity of the load as
eL: Load eccentricity is defined as the perpendicular distance of the
load from the center of the bone section and is maximum at the
bone's longitudinal mid-plane for our idealized bone model.

Following Bertram and Biewener (Bertram and Biewener,
1988), let fmax be the maximum load supported by a curved bone,
i.e., the load that produces a total normal stress in the bone equal
to the yield strength of the bone, Sy. For the case of an axial load in
the plane of curvature of the bone (i.e., α¼ 01Þ, the maximum
normal compressive stress produced in a bone of geometry
defined as in Fig. 1 occurs on the longitudinal mid-plane on the
posterior surface and is given by

Sy ¼ smax ¼ fmax

A
þMmaxR

I
¼ fmax

πR2 þ4fmaxðRþelsÞR
πR4

Sy ¼ smax ¼ fmax
R2þ4ðRþelsÞR

πR4

 ! ð2Þ

whereMmax is the maximum bending moment, A is the area of the
bone's cross section, and I is the area moment of inertia of the
bone's section. Let Fmax be the maximum load supported by a
straight bone for which els ¼ 0:

Sy ¼ smax ¼ Fmax
R2þ4R2

πR4

 !
¼ Fmax

5

πR2

� �
: ð3Þ

Equating Eqs. (2) and (3) and solving for the ratio of fmax/Fmax

which is the relative load carrying capacity (RLLC) the bone yields,

Fig. 1. (a) A simplified model of a curved bone loaded axially on its outer edge by a
load f showing longitudinal shape eccentricity (els), load eccentricity (eL) and radius
of curvature (Rc). The inferior section shown is assumed to be a plane of symmetry.
(b) Top view of the top section and midsection of the bone showing the moment
arm, Lm. The angle α defines the circumferential location of the axial load. Note that
as alpha increases, Lm decreases which decreases the bending moment. This is
reflected in Fig. 10 with higher RLCC occurs at higher alpha values.
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Fig. 2. Radius of Curvature Rc and Curvature c vs. Longitudinal Shape Eccentricity
els. Note that Rc is non-dimensionalized by the radius of the bone's cross section R
(Rc/R) and curvature c and longitudinal shape eccentricity els are non-dimensiona-
lized by the length of the bone L (cL and els/L).
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