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H I G H L I G H T S

� Systematic comparison of models regarding quality of fit to tracer transport data.
� Model class allows construction of numerous models with adjustable complexity.
� A designated model filter removes irrelevant and redundant models.
� Different optimal models were found for exemplary data sets.
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a b s t r a c t

Studies of long-distance tracer transport in plants result in spatio-temporal data sets. Compartmental
tracer transport models can be used to quantitatively characterize or compare such data sets derived
from different experiments. Depending on the specific experimental situation it might be necessary to
apply different models. Here, we present a general class of compartmental tracer transport models which
allows a systematic comparison of different models regarding the quality of fitting to the experimental
data. This model class is defined by a system of partial differential equations (PDEs) for an arbitrary
number of parallel compartments with individual transport velocities and numerous lateral exchange
connections. A large number of model instances with adjustable complexity can be derived from this
model class by permitting only certain model parameters such as flux velocities or exchange rates
between compartments to be non-zero. Since some of these models are either inconsistent or redundant
we designed a model filter using combinatory rules in order to keep only valid and unique models.
A numerical solver for the PDEs was implemented using finite volumes and a weighted essentially non-
oscillatory (WENO) scheme. Several candidate models were fitted to experimental data using a Monte
Carlo multi-start strategy to approximate the global optimum within a certain parameter space. Analysis
of exemplary tracer transport experiments on sugar beet, radish and maize root resulted in different best
models depending on the respective data and the required fit quality.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent publication we presented a mechanistic model for
long distance tracer transport in plants including an analytic
solution of the respective partial differential equations (PDEs)
(Bühler et al., 2011). Fitting such a model to data sets from tracer
studies (measured e.g. with positron emission tomography, PET, or
magnetic resonance imaging, MRI) results in model parameter
estimates which characterize the dynamical behavior of the tracer
and can be used for quantitative comparison of different data sets,

e.g. from plant phenotyping studies (Fiorani and Schurr, 2013).
For a recent application of this method, see De Schepper et al.
(2013). The model used in Bühler et al. (2011) was chosen on the
basis of physiological considerations and consisted of three neigh-
boring compartments roughly representing the main functions of
vascular transport pathways (e.g. phloem or xylem) and the
adjacent tissues. These functions include: (1) axial transport of
tracer, simulated by a plug flow in the first compartment,
(2) reversible lateral exchange of tracer between the first and
second compartment, (3) storage of tracer in the third compart-
ment, and (4) diffusion in axial direction within the first two
compartments, see Fig. 1 in Bühler et al. (2011). The capability of
the model to represent experimental data acquired by PET was
demonstrated. However, it is not clear whether this model is the
‘best’ model according to the principle of parsimony: the most
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exact and at the same time most simple data representation
possible (Burnham and Anderson, 2002). For example, considering
that the model appeared to be over-parameterized when fitted to
some of the studied experimental data sets, it is a legitimate
question whether or not a simpler model (e.g. with only two
compartments) could fit the same data equally well. On the other
hand, only slightly more complex models with several indepen-
dent transport conduits (representing e.g. a bundle of parallel
phloem sieve tubes) instead of just a single transporting compart-
ment may fit the data better in other cases. The ‘best’model choice
will generally depend on the investigated plant species or the
analyzed plant organ, e.g. stem, root system, or storage organ.

In order to systematically compare different models we set up a
generalized class of mechanistic transport models, with an arbi-
trary number of compartments and flux along one or more
compartments as well as lateral material exchange between all
compartments. While generalizing the model structure, we still
restricted ourselves to pure tracer models with parameters con-
stant in time and space. In addition, the same model restrictions
hold as described in Bühler et al. (2011), i.e., geometrical and
anatomical details are disregarded, transport is allowed only in
positive axial direction, and axial transport and lateral exchange in
our models average the specific and complex mechanisms of
processes in the plant (Patrick, 2013) such as passive or active
axial transport and lateral exchange of labeled molecules.
In contrast to Bühler et al. (2011), we excluded diffusion in axial
direction for simplicity.

Each model instance (hereafter just called model) is defined by
a specific system of PDEs characterized by a certain set of non-zero
parameters. Consequentially, the model of Bühler et al. (2011) now
becomes just one member of the much more general set of
possible models defined by the model class. We applied finite
volumes and a robust and fast WENO scheme (Shu, 1998) for the
numerical solution (forward simulation) of the resulting PDEs,
since no analytical solution is available for most models. The
framework of model fitting and error analysis (bootstrapping) is
similar to Bühler et al. (2011). A Monte Carlo multi-start approach
was applied to avoid local optima.

The introduced set of possible models is very large even for a
small number of compartments N. Therefore, a model filter was
designed to eliminate redundant and obviously invalid models.
We applied a ‘bottom-up’ approach for evaluating models with an
increasing number of model parameters k until the quality of the
achieved fits ceased to improve significantly. We ranked the

resulting models according to their fitting quality, number of
model parameters and parameter certainty.

2. A general mechanistic tracer transport model class

2.1. Model class definition

The basic composition of the model class is sketched in Fig. 1.
Tracer is present in N parallel compartments. Each compartment
can have individual transport velocities in axial direction (spatial
coordinate x). Tracer is allowed to transfer between all compart-
ments, determined by respective exchange rates.

This model class is defined by a system of partial differential
equations

∂ ρ!ðx; tÞ
∂t

¼ AT �V
∂
∂x

� �
ρ!ðx; tÞ ð1Þ

The vector ρ!¼ ðρ1⋯ρNÞT denotes the tracer density distribu-
tion (arbitrary units) within each compartment at all spatial
positions x and time points t. Here and in the following, we omit
space and time dependence in our notation, i.e. ρ!¼ ρ!ðx; tÞ and
ρi ¼ ρiðx; tÞ. The coupling matrix A describes tracer entering
compartment j coming from compartment i by an exchange rate
eij (first term of Eq. (2)) in units of s�1. The second term of Eq. (2)
ensures mass conservation by removing exchanged tracer from the
respective compartment. The third term of Eq. (2) describes decay
of a radioactive tracer by a material specific rate λ, e.g. λE5.67�
10�4 s�1 for the isotope 11C frequently used in PET measurements
on plants.
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All diagonal elements eii are zero (eii¼0 for i¼1…N) since there

is no tracer exchange of one compartment with itself. The matrix V
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contains the flux velocities for each compartment. The exchange
rates eij and the elements of V are the parameters influencing the
spatial and temporal tracer distribution and are therefore referred
to as the model parameters. The complexity of the system of PDEs
in Eq. (1) depends on howmany of the model parameters are non-
zero. Each set of non-zero parameters characterizes a specific
model instance (model) of the model class.

Current tracer imaging methods typically do not allow a
separation of tracer in different tissues. Thus, the compartments
cannot be individually observed. For that reason, we compare the
measured signal to the sum ρtr of the simulated tracer distribution
over all compartments

ρtr ¼ ∑
N

i ¼ 1
ρi ð4Þ

Tracer entering the system is described either by a spatial initial
condition at time t ¼ tini

ρ!0ðxÞ ¼ ρ!ðx; t ¼ tiniÞ ð5Þ
or by a time dependent boundary condition at position x¼ xb

ρ!bðtÞ ¼ ρ!ðx¼ xb; tÞ ð6Þ

Fig. 1. Sketch of general mechanistic tracer transport model class. The model class
consists of N one-dimensional compartments arranged in parallel along a spatial
coordinate x. Within the ith compartment, tracer movement is controlled by flux
velocities vi. Lateral exchange of tracer between each of the compartments is
controlled by individual exchange rates eij. From this model class, single model
instances can be defined by allowing a specific set of model parameters to be non-
zero. Tracer enters the system by arbitrary initial and boundary conditions.
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