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H I G H L I G H T S

� Introduces Fisher's reproductive value into the study of evolutionary graph theory.
� Proves basic properties of reproductive value on graphs.
� Calculates neutral fixation probability for any graph.
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a b s t r a c t

Evolutionary graph theory has grown to be an area of intense study. Despite the amount of interest in the
field, it seems to have grown separate from other subfields of population genetics and evolution. In the
current work I introduce the concept of Fisher's (1930) reproductive value into the study of evolution on
graphs. Reproductive value is a measure of the expected genetic contribution of an individual to a distant
future generation. In a heterogeneous graph-structured population, differences in the number of
connections among individuals translate into differences in the expected number of offspring, even if
all individuals have the same fecundity. These differences are accounted for by reproductive value. The
introduction of reproductive value permits the calculation of the fixation probability of a mutant in a
neutral evolutionary process in any graph-structured population for either the moran birth–death or
death–birth process.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Population structure has, for some time, been recognized as an
important factor in determining the outcome of an evolutionary
process. Structure can act to arrange individuals and produce
evolutionary outcomes not seen in well-mixed populations
(Nowak and May, 1992). Early models considered an infinite
number of islands of individuals, each linked by global dispersal
(Wright, 1931). Subsequent work, like the stepping-stone model of
Kimura and Weiss (1964) and Weiss and Kimura (1965), consid-
ered the spatial arrangement of these islands. These models were
refined to the finite population case by considering a finite number
of breeding demes linked by dispersal patterns (Levins, 1969,
1970). Drawing on these earlier models, evolutionary graph theory
has emerged as a convenient framework for modelling population
structure (Lieberman et al., 2005).

An evolutionary graph G is a collection of vertices V and edges E
between them. The vertices are occupied by haploid individuals
and the edges indicate who interacts with whom and where
offspring disperse. Throughout this paper I denote vertices by vi

and the individual residing on vi by i. It is possible that the vertices
are linked by two sets of edges, one indicating interactions and the
other, replacements (Ohtsuki et al., 2007), but these two sets are
often assumed to coincide, as they do in this paper.

Since their introduction in Lieberman et al. (2005), evolution-
ary graphs have become a well-studied representation of struc-
tured populations. The exact features of graphs that promote, or
work against, cooperation are, however, still elusive. For highly
symmetric (vertex-transitive) graphs exact results for any additive
game undergoing a weak-selection evolutionary process have
been obtained (Ohtsuki et al., 2006; Taylor et al., 2007). This is
the largest class of graphs for which results are known, encom-
passing many other results (Ohtsuki and Nowak, 2006; Grafen,
2007). Actual interaction graphs are often highly non-symmetric
(Santos et al., 2008) and it is of great interest to study evolution in
these environments.

Very few results have been obtained for non-symmetric graphs.
There has been some interest in the role of vertex degree. Some
work (Santos et al., 2008) has focused on the distribution of the
degrees of vertices. Certain distributions (scale-free) have been
shown to promote altruistic and cooperative behaviours more than
others (e.g., regular graphs). These approaches have uncovered
global features of graphs and a description of the process at the
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level of the individual is desirable. One of the challenges faced in the
study of heterogeneous populations is dealing with individuals
of differing quality. Reproductive value (Fisher, 1930) is a way of
accounting for such differences.

Antal et al. (2006) are perhaps the first to consider hetero-
geneous graphs at the individual scale. They have found that it is
advantageous for the fitter mutant to occupy high-degree nodes in
a Moran death–birth model (their ‘biased voter model’) and lower-
degree vertices in the birth–death process (their ‘biased invasion
process’). This has been confirmed by subsequent research (Broom
et al., 2011). In the current paper I show that these results, when
phrased in terms of reproductive value (Fisher, 1930; Grafen,
2006), are two sides of the same coin.

The work of Antal et al. (2006) and Broom et al. (2011) focuses
on the case of constant selection, where the resident population
has fecundity 1 and a mutant with fecundity r41 arises. The
probability of this mutant taking over the entire population is
calculated and compared against the neutral case of r¼1. If this
mutant fixation probability is greater, the mutant is advantageous.
An extension of the results of Antal et al. (2006) and Broom et al.
(2011) to the case of a public-goods game, as in Santos et al.
(2008), is highly desirable. I attempt to make headway by
presenting an example that illustrates that a mutant individual
can have greater evolutionary success depending on where it first
emerges.

The main thrust of this paper is a complete description of the
fixation probability of an allele in any graph-structured population
undergoing neutral drift. For a structured population of size Nwith
the property that all sites are equivalent—for example, degree-
regular graphs—then this fixation probability is 1/N, irrespective
on which vertex the allele is first found. This is not the case for
degree-heterogeneous graphs. In general, the fixation probability
depends on the degree of the vertex on which the allele initially
appears. In the current paper I calculate these fixation probabilities
for both the birth–death and death–birth Moran processes on any
graph. A general rule is derived: fixation probability is positively
associated with relative reproductive value. An allele will have a
higher fixation probability if it first emerges on a vertex with a
higher reproductive value in both the birth–death and death–birth
processes.

2. Reproductive value

Reproductive value has been defined in various ways by different
authors. The core of the definitions is the notion of long-term
genetic share of a population. Fisher (1930) first introduced repro-
ductive value as a means of accounting for the differences in the
reproductive output of different ages of females. Since that time
reproductive value has been applied to age (Charlesworth, 1980), sex
(Taylor, 1990), and spatially structured (Rogers and Willekens, 1978)
populations and has been placed on a rigorous mathematical footing
(Grafen, 2006). At an intuitive level, the relative reproductive value
of an individual i is the probability that i is the ancestor of a
randomly chosen individual in a distant future generation (Taylor
and Frank, 1996).

To define reproductive value, I suppose that the individuals in
the population under consideration are neutral with respect to
selection. That is, the genotype of an individual does not affect
their fitness. Births and deaths occur at random in the population.
Throughout this paper I work with two Moran processes, which
will be made explicit, that ensure a fixed population size. In the
birth–death process, a birth occurs randomly in the population
and the new offspring displaces a neighbouring individual, who
dies. In the death–birth process an individual is chosen to die and
a neighbouring individual is chosen at random to place an

offspring on the newly vacated site. These birth and death
probabilities are captured by a transition matrix M. Specifically, I
define the i, j entry of M to be the probability pij that the current
individual i is the offspring of individual j produced during a birth/
death event. This entry will differ depending on whether births
precede deaths or vice versa, and examples throughout the
paper will illustrate this. An individual may be unaffected by the
birth/death event in which case we say that such an individual is
“from itself”.

As a first example of such an M matrix, consider a birth–death
process on the 3-line graph in Fig. 1. In the neutral process all
individuals have the same fecundity and are therefore chosen to
reproduce with equal probability, which in the 3-line case is 1/3.
If the centre, or hub, individual is chosen, then it places an offspring
on either leaf vertex with probability 1/2. If a leaf is chosen, its
offspring disperses to the hub with probability 1. Given the current
state of the population, we can ask where the individual on a leaf
vertex was before a birth–death event. With probability 1/6, the
individual is the offspring of the hub vertex and with probability 5/6
the individual was unaffected by the birth–death event and was
already resident on the leaf vertex. For the hub individual, with
probability 1/3 it came from one of the leaf vertices and with
probability 1/3 it was unaffected by the birth–death event and
already resident on the hub. In all, with the vertex numbering in
Fig. 1,
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This matrix M can be used to find the vector of probabilities of the
origin of the left-most leaf individual. Represent this individual with
the vector ½1;0;0�. This yields
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which captures the argument above: with probability 5/6 the leaf
individual was unaffected by the birth–death event and with
probability 1/6 it is an offspring of the hub individual. Another
right-multiplication by M yields the probability vector for the
generation two previous, and so on.

To find the probability that a randomly chosen individual in the
population at a time t, measured in the number of birth/death
events, in the future is from the lineage originating from individual
i at the present time t0¼0, we perform a calculation similar to the
above on the vector ½1;1;1�:
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This expression converges rapidly as t increases (Barton and
Etheridge, 2011). Hence, the vector resulting from the calculation
in Expression (3) above is stable to additional right-multiplications
by M for sufficiently large t. This vector is the vector of reproduc-
tive values and when normalized, yields the probability distribu-
tion of the origin of a randomly chosen individual. This is captured

1 2 3

Fig. 1. The line graph on three vertices is the simplest example of a degree-
heterogenous graph. Label the vertices v1, v2, and v3 from left to right. As is shown
in the penultimate section, spiteful behaviours can evolve in such a population
structure and these depend on where the spiteful individual first emerges.
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