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H I G H L I G H T S

� We model population games with agent mobility in continuous space.
� Random mobility favors cooperation when agents imitate their most successful neighbor and move with constant velocity.
� When agents move in a viscous medium velocity decreases and stable monomorphic clusters form.
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a b s t r a c t

This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk–Dove, and
Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic
interactions, and in the presence of agent random mobility. The goal is to investigate whether
cooperation can evolve and be stable when agents can move randomly in continuous space. When the
agents all have the same constant velocity cooperation may evolve if the agents update their strategies
imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation
does not improve with respect to the static random geometric graph case. When viscosity effects set-in
and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one
observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's
Dilemma. However, cooperation does not spread in the population as in the constant velocity case.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and previous work

Cooperative behavior is socially beneficial but difficult to obtain
among selfish individuals. In this context, the Prisoner's Dilemma
game is a widely used paradigm for the investigation of how
cooperation might evolve in a population of self-regarding agents.
In fact, game-theoretical results predict defection as a Nash equili-
brium or as a stable state of the population dynamics (Hofbauer and
Sigmund, 1998; Vega-Redondo, 2003). In spite of this, non-negligible
amounts of cooperative behavior can be observed daily in the animal
kingdom, in the human society, and also in the laboratory, where
controlled experiments can be carried out. Many mechanisms have
been suggested to explain these behaviors, such as direct and indirect
reciprocity, kin reciprocity, group reciprocity, and population struc-
ture among others (see e.g. Nowak, 2006 and references therein for a
summary of this vast amount of work).

Among the various reasons that have been advocated, the
structure of the interacting population is one of the simplest

factors that can change the generalized defection outcome with
respect to the well-mixed population case. The population struc-
ture of the interacting agents can be generically represented by a
relational graph in which two directly linked vertices stand for two
interacting agents. This locality of contacts means that only pairs
or groups of individuals that are direct neighbors play the game
among themselves. By using theoretical models and simulations, it
has been found that some network structures appear to be more
conducive to cooperation than others, albeit this result is con-
tingent upon the evolutionary dynamics of the model (Szabó and
Fáth, 2007; Santos et al., 2006a; Roca et al., 2009; Ohtsuki et al.,
2006). However, an earlier way of considering the effect of
population structures makes use of the concept of geographical
space. Indeed, physical space may be more adequate than generic
relational structures in many cases in which territoriality plays an
important role. A simple first approximation of physical space is
given by a regular discrete lattice in two dimensions. Building on
previous work by Axelrod (1984), Nowak and May (1992) and
Nowak et al. (1994) was able to show by extensive simulations
that, even when the game is one-shot, i.e. pairs of players interact
anonymously, cooperation can evolve and can persist for a non-
negligible region of the game phase space thanks to positive
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assortment among cooperators. Of course, anonymity of neighbors
is difficult to maintain in a real unchanging social network
environment, but this is the context that has been adopted in
previous modeling work. A summary of this and other early work
is provided in Nowak and Sigmund (2000). Actually, the gains in
the PD are relatively limited and depend on the players' strategy
update rule used (Roca et al., 2009). Meanwhile, the improve-
ments are large in the related game called Stag Hunt (SH) (Roca
et al., 2009; Skyrms, 2004) when played on a grid. Evolutionary
games on arbitrary static spatially embedded networks have been
recently studied in Buesser and Tomassini (2012).

All the above refers to static environments. However, it is easy
to see that fixed environments are the exception rather than the
rule. Evolutionary games on dynamic networks have been inves-
tigated in recent years, see e.g. Eguíluz et al. (2005); Santos et al.
(2006b); Pestelacci et al. (2008); Wu et al. (2010) and the review
article (Perc and Szolnoki, 2010). Although the models differ in
their assumptions and the details of the dynamics, there is a
consensus emerging on the fact that purposeful, or strategic link
update is a further factor allowing cooperating individuals to
escape exploiting defectors by cutting links to them and forming
new links with fellow cooperators, which facilitates clustering and
positive assortment of cooperators, ultimately leading to sustained
global cooperation. In a way analogous to the dynamic network
case, in the case of spatially embedded agents it is easy to think of
mobile rather than fixed individuals. Many examples can be found
in biological and ecological sciences, in human populations, and in
engineered systems such as ad hoc networks of mobile commu-
nicating devices or mobile robot teams. Mobility may have positive
or negative effects on cooperation, depending on several factors.
An early brief investigation of random grids and spatial drift is to
be found in Nowak et al. (1994). Another study was carried out by
Enquist and Leimar (1993) whose main conclusion of Enquist and
Leimar (1993) was that mobility may seriously restrict the evolu-
tion of cooperation. In the last decade there have been several new
studies of the influence of mobility on the behavior of various
games in spatial environments covering essentially two strands of
research: one in which the movement of agents is seen as a
random walk, and a second one in which movement may contain
random elements but it is purposeful, or strategy-driven. Exam-
ples of the latter kind of work are to be found in Helbing and Yu
(2009), Jiang et al. (2010), Cong et al. (2012), Chen et al. (2011),
Aktipis (2004) and Roca and Helbing (2011). In spite of the
difference among the proposed models, the general message of
this work is that purposeful contingent movement may lead to
highly cooperating stable or quasi-stable population states
depending on the individuals' density and the degree of mobility.

As said above, the other line of investigation is centered on random
diffusion of the mobile agents through space, either in continuous
space (Meloni et al., 2009) or, more commonly, on diluted grids
(Vainstein et al., 2007; Sicardi et al., 2009). Random diffusion, with its
tendency to mix-up the population, has been thought to hinder
cooperation by weakening the possibility of cooperator cluster forma-
tion. In spite of this, the work of Vainstein et al. (2007) and Sicardi
et al. (2009) shows that cooperation can bemaintained with respect to
the static case and even enhanced for some parameters' ranges. In the
continuous space case of Meloni et al. (2009) cooperation can be
maintained only for low velocities and low temptation to defect.
Within this framework, there has also been work on n-person
Prisoner's Dilemma and public goods games, either in the one-shot
case (Cardillo et al., 2012), as well as in the iterated, short memory case
(Chiong and Kirley, 2012). The effect of diffusion in a spatial ecological
public goods game has been studied by Wakano et al. (2009) using a
partial differential equation formalism.

The present investigation belongs to the random diffusion
category and deals with memoryless agents performing random

movements and interacting in pairs with other agents in contin-
uous space. Indeed, we believe that while grids are interesting
because of their simplicity, a continuous space approach is more
natural and less restricted. Our approach follows Meloni et al.
(2009) but it largely extends and completes it in various ways.
Indeed, Meloni et al. studied the weak Prisoner's Dilemma, which
is the segment at the frontier between the genuine Prisoner's
Dilemma game space and the Hawk–Dove game (Hofbauer and
Sigmund, 1998). Here we explore the full conventional Prisoner's
Dilemma space and also the regions belonging to the Stag Hunt
and Hawk–Dove games. Furthermore, we use a second strategy
update rule besides their fitness-proportional one. Finally, while
the velocity of the agents was held constant and the same for all
individuals in the population in Meloni et al. (2009), we explore
the effects of having players diffusing with different velocities.
Some relationships with the results found in the grid-based
diffusion systems proposed in Vainstein et al. (2007) and Sicardi
et al. (2009) will also be discussed.

2. Model description

In this section we describe our model and the numerical
simulations parameters. We also describe what is new with
respect to the previous work.

2.1. The spatial environment

The environment in which the set of agents N interact and move
is a square in the Euclidean plane of side L¼1 thus having unit area.
For the purposes of the dynamics the square is wrapped around into
a torus. Agents are initially distributed uniformly at random over the
space. Every agent j has an interaction neighborhood which has the
same extension for all agents and is given by a circle of radius r
around the given agent. All the agents that fall into this circle at a
given time t are considered to be neighbors N ðj; tÞ of the agent, i.e.
N ðj; tÞ ¼ f8kANjdistðj; kÞorg, where distðj; kÞ is the Euclidean dis-
tance between agents (points) j and k. Agents are simply material
points, they do not have an area. Since the spatial region area has
unit value, the density ρ of the agents is ρ¼ jNj.

Given the above setting, at any point in time the current
implicit network of contacts between the agents turns out to be
a Random Geometric Graph (RGG) (Dall and Christensen, 2002) as
illustrated in Fig. 1. The average degree k of a RGG is k ¼ πρr2. Thus
it is possible to consider k as a parameter of RGGs, instead of the
radius r. Therefore, in order to construct a RGG with an average

degree that tends to k, it is sufficient to use the radius r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðπρÞ

q
.

This class of networks has an high average clustering coefficient
(Dall and Christensen, 2002) and positive degree–degree correla-
tions (Antonioni and Tomassini, 2012).

2.2. Games studied

Agents in our system, when they interact in pairs, play one of
three common two-person, two-strategy, symmetric game classes,
namely the Prisoner's Dilemma (PD), the Hawk–Dove Game (HD),
and the Stag Hunt (SH). These three games are simple metaphors
for different kinds of dilemmas that arise when individual and
social interests collide. The games have the generic payoff matrix
M (Eq. (1)) which refers to the payoffs of the row player. The payoff
matrix for the column player is simply the transpose M> since the
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