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H I G H L I G H T S

� First structure-based approach for prediction of protein–FMN interaction.
� Does not require evolutionary information for the prediction.
� Useful in annotating proteins structures of unknown function and computational protein models.

a r t i c l e i n f o

Article history:
Received 26 July 2013
Received in revised form
29 October 2013
Accepted 30 October 2013
Available online 7 November 2013

Keywords:
Structure-based
Computational method
Machine learning
Drug discovery
Functional annotation

a b s t r a c t

Flavin mono-nucleotide (FMN) is a cofactor which is involved in many biological reactions. The insights
on protein–FMN interactions aid the protein functional annotation and also facilitate in drug design. In
this study, we have established a new method, making use of an encoding scheme of the three-
dimensional probability density maps that describe the distributions of 40 non-covalent interacting atom
types around protein surfaces, to predict FMN-binding sites on protein surfaces. One machine learning
model was trained for each of the 30 protein atom types to predict tentative FMN-binding sites on
protein structures. The method's capability was evaluated by five-fold cross-validation on a dataset
containing 81 non-redundant FMN-binding protein structures and further tested on independent
datasets of 30 and 15 non-redundant protein structures respectively. These predictions achieved an
accuracy of 0.94, 0.94 and 0.96 with the Matthews correlation coefficient (MCC) of 0.53, 0.53 and 0.65
respectively for the three protein structure sets. The prediction capability is superior to the existing
method. This is the first structure-based approach that does not rely on evolutionary information for
predicting FMN-interacting residues. The webserver for the prediction is available at http://ismblab.
genomics.sinica.edu.tw/.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

FMN is an essential cofactor in flavoproteins which are involved
in (i) redox reactions in the energy producing metabolic pathways
and (ii) non-redox reactions in which FMN acts as acid or base in
the covalent-intermediate formation (Mansoorabadi et al., 2007;
Serrano et al., 2012). Flavodoxin, which is one of the flavoproteins,
is considered as one of the potential drug targets against microbial
infections because it plays a critical role in the electron transfer

system of pathogenic bacteria but not in mammals. Helicobacter
pylori flavodoxin acts as an electron acceptor in pyruvate meta-
bolic pathway, and thus inhibition of this protein can affect the
bacterial survival (Cremades et al., 2005). Chorismate synthase is
another FMN-binding protein involved in shikimate pathway
(Macheroux et al., 1999) and is considered as a primary target in
developing antibacterial therapeutics against tuberculosis
(Fernandes et al., 2007). Hence, identification of FMN-binding
proteins and binding site residues can aid in the drug discovery
processes for antimicrobial therapeutics.

A computational method for predicting the FMN-binding
residues on proteins would greatly facilitate defining FMN-
binding sites on protein structures. Computational methods have
been developed to predict FMN (Wang et al., 2012), flavin adenine
dinucleotide (FAD) (Mishra and Raghava, 2010) and nicotinamide
adenine dinucleotide (NAD) (Ansari and Raghava, 2010) binding
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sites. These computational methods are reasonably successful in
their respective predictions. Nevertheless, they are all sequence-
based predictors relying on evolutionary information. Conse-
quently, these methods may have difficulty in predicting binding
site in orphan proteins, which shares very low sequence similarity
with existing proteins. A structure-based method which does not
rely on evolutionary information has yet to be developed. In this
study, we have developed such a structure-based method for the
prediction of FMN-interacting residues on protein surfaces.

This method uses machine learning approach to predict FMN-
binding sites on protein surfaces by recognizing characteristic
interacting atom distribution patterns associated with the FMN
binding. The basic principle has been already applied to predict
the protein–protein (Chen et al., 2012) and protein–carbohydrate
(Tsai et al., 2012) interactions successfully. Here we extend this
approach to predicting FMN-interacting residues. In the predic-
tion, protein surface atoms were first categorized into 30 atom
types and one machine learning model was trained for each of the
atom types. The input attributes for the machine learning algo-
rithm were normalized distance–weighted sum of three-
dimensional probability density maps (PDMs) of 40 interacting
atom types (30 atom types from protein, one from water and nine
from FMN) on the protein surfaces. The PDMs around the query
protein atoms for the protein interacting atom types and water
have been described in previous publications (Chen et al., 2012;
Tsai et al., 2012); the PDMs for the nine FMN interacting atom
types were constructed with the protein–FMN interacting atom
pairs from the dataset of 192 FMN–protein complex structures.
The machine learning algorithm learned the patterns of the
attributes to distinguish the binding atoms from the non-binding
atoms on the protein surfaces. We evaluated our predictor perfor-
mance on the training dataset P81 as well independent test sets
P30 and P15 (Wang et al., 2012). The results indicate that our
approach is the best method for predicting the FMN-binding sites
on protein structures.

2. Materials and methods

2.1. Dataset

The training and test datasets except P15 were obtained from
Wang et al. (2012). The autor obtained 111 protein chains from
PDB (Berman et al., 2002). Then they randomly selected 30
proteins (P30) for the independent test and the remaining 81
protein chains (P81) were used as a training set. For the P15, we
extracted protein–FMN complexes from PDB and then used PISCES
program (Wang and Dunbrack, 2003) to remove structures which
has the sequence identity more than 10% with P81 and P30
datasets that finally yielded 15 protein chains.

2.2. Construction of three-dimensional probability density maps
on protein surfaces

The detailed method for the PDMs construction has been
discussed previously (Chen et al., 2012; Tsai et al., 2012; Yu
et al., 2012). In brief, the interacting atom types from protein,
water, and FMN are shown in Table 1. The PDMs for these
interacting atom types were constructed with interacting atoms
retrieved from the interacting atom database described previously
(Chen et al., 2012; Tsai et al., 2012; Yu et al., 2012). The interacting
atom database for protein–FMN interacting atom pairs was con-
structed with the dataset of 192 protein–FMN complexes.

2.3. PDM-based attributes as inputs for machine learning algorithms

Protein surface atoms were categorized into 30 protein atom
types (Table 1, 1–30), and one machine learning model was trained
for each of the atom types. The input attributes for each of the
protein atom i (ai, j (j¼1,41): 40 attributes from the 40 interacting
atom type PDMs plus one attribute from geometry) for each of the
machine learning models were calculated from the PDMs on the
protein surface and from the geometry of the protein surface as
the following: for each atom i on the surface of the query protein
(solvent accessible surface area of atom i40), the PDM values
associated with the grids within 5 Å radius centered at the atom
are summed in the following equation:

si;j ¼∑
r
i;kr 5 Å

k gk; j ð1Þ

where Si,j is the PDM sum for interacting atom type j at atom i; ri,k is
the distance between atom i to a grid point k; and gk,j is the PDM value
of interacting atom type j at grid point k. Ai,j (j¼1,40) associated with
each atom i was calculated with the following equation:

Ai;j ¼ Si;jþ∑di;k r10 Å
k Sk; j � d�2

i;k =∑di;n r10 Å
n d�2

i;n ð2Þ

where Si,j is defined in Eq. (1); di,k is the distance between atom i and
atom k. The attribute set (ai, j (j¼1,40)) for the machine learning

Table 1
Protein and FMN atom types.

ID # Atom type Radius (Å) Description

1 NH1 1.65 Backbone NH
2 C 1.76 Backbone C
3 CH1E 1.87 Backbone CA (exc. Gly)
4 O 1.40 Backbone O
5 CH0 1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD
6 CH1S 1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB, Val CB
7 CH2E 1.87 Tetrahedral CH2 (except CH2P,CH2G) All CB
8 CH3E 1.87 Tetrahedral CH3
9 CR1E 1.76 Aromatic CH (except CR1W, CRHH, CR1H)

10 OH1 1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH)
11 OC 1.40 Carboxyl O (Asp OD1, OD2, Glu OE1, OE2)
12 OS 1.40 Sidechain O: Asn OD1, Gln OE1
13 CH2G 1.87 Gly CA
14 CH2P 1.87 Pro CB, CG, CD
15 NH1S 1.65 Sidechain NH: Arg NE, His ND1, NE1, Trp NE1
16 NC2 1.65 Arg NH1, NH2
17 NH2 1.65 Asn ND2, Gln NE2
18 CR1W 1.76 Trp CZ2, CH2
19 CY2 1.76 Tyr CZ
20 SC 1.85 Cys S
21 CF 1.76 Phe CG
22 SM 1.85 Met S
23 CY 1.76 Tyr CG
24 CW 1.76 Trp CD2, CE2
25 CRHH 1.76 His CE1
26 NH3 1.50 Lys NZ
27 CR1H 1.76 His CD2
28 C5 1.76 His CG
29 N 1.65 Pro N
30 C5W 1.76 Trp CG
31 HOH 1.40 Water
32 P 2.10 Phosphate
33 O1O2 1.68 Phosphate oxygen
34 N1N9 1.82 Base
35 N 1.82 ring
36 C 1.90 ring
37 N 1.82 link
38 O 1.68 link
39 C.3 1.90 Sp3 carbon
40 O.3 1.68 Sp3 oxygen

The protein atom types 1–31 have been previously defined by Laskowski et al.
(1996) with minor modifications. The atom types 32–40 were defined in this work
for FMN molecule.
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