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H I G H L I G H T S

� A two-stage variable factors Bregman
regularization homotopy method is
proposed to identify the parameters
of metabolic network.

� A disturbance mechanism for escap-
ing the local optimum is introduced to
close the global optimization solution.

� Three metabolic network inverse pro-
blems are investigated; the results
show that our method performs bet-
ter than several popular methods.
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a b s t r a c t

Metabolism is a very important cellular process and its malfunction contributes to human disease. Therefore,
building dynamic models for metabolic networks with experimental data in order to analyze biological
process rationally has attracted a lot of attention. Owing to the technical limitations, some unknown
parameters contained in models need to be estimated effectively by means of the computational method.
Generally, problems of parameter estimation of nonlinear biological network are known to be ill condition
and multimodal. In particular, with the increasing amount and enlarging the scope of parameters, many
optimization algorithms often fail to find a global solution. In this paper, two-stage variable factor Bregman
regularization homotopy method is proposed. Discrete homotopy is used to identify the possible extreme
region and continuous homotopy is executed for the purpose of stability of path tracing in the special region.
Meanwhile, Latin hypercube sampling is introduced to get the good initial guess value and a perturbation
strategy is developed to jump out of the local optimum. Three metabolic network inverse problems are
investigated to demonstrate the effectiveness of the proposed method.

& 2013 Published by Elsevier Ltd.

1. Introduction

Biological processes are often represented in the form of networks
such as protein–protein interaction networks (Wei et al., 2004),
regulatory networks (Yang et al., 2008), signaling pathways (Nassiri
et al., 2012) or metabolic pathways (Jeong et al., 2001).The aim of
studying biological networks is to understand the structure and

function of complex biological systems by combining experimental
data with mathematical modeling and advanced computational
techniques. Metabolism, as a main function in cell, is involved in
many disease controls. To build the dynamic models for the metabolic
networks with experimental data has attracted many researchers'
attention recently.

Mathematical models are an invaluable tool for analysis,
design, optimization and control of the biological systems under
consideration. In the context of metabolic network, MM (Michae-
lis–Menten) model or power law model is frequently adopted to
quantitatively describe the dynamic properties of biological reac-
tions. Owing to the technical limitation, some kinetic parameters
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are very difficult, expensive, time consuming or impossible to
measure directly (Schwacke and Voit, 2005; Liu and Wang, 2009).
For these reasons, it is a key issue to estimate the unknown
parameters from measurements of other quantities for biochem-
ical modeling. Parameter estimation for mathematical models in
biology networks presents four characteristics, which make this
problem very difficult to solve: the models are highly nonlinear,
there are a large number of parameters to be estimated, the
estimated parameters vary in a large range and the information
content of the available experimental data is frequently scarce
(Villaverde et al., 2012).

In past years, many researchers give a lot of attention to this
problem in the system biology. Various optimization methods are
developed to evaluate the parameters of biological network, such
as evolutionary algorithms (Tsai and Wang, 2005; Saha et al.,
2008; Auliac et al., 2008; Ho et al., 2007), simulated annealing
(Wei et al., 2004), hybrid or cooperation optimization algorithm
(Liu and Wang, 2009; Villaverde et al., 2012; Balsa-Canto et al.,
2008, 2005; Liu and Wang, 2010). In view of the large range of
parameters, some researchers are inclined to narrow the para-
meter search space (Tucker et al., 2007; Tucker and Moulton,
2006; Kutalik et al., 2007) or use Kalman filtering (Lillacci and
Khammash, 2010). In order to decrease the parameter numbers
estimated simultaneously, sensitivity analysis is imported to
simple models (Ashyraliyev et al., 2009; Wu et al., 2008). However,
main problems associated with these optimization methods are
that they tend to be computationally expensive and may trap into
local optimum if the nonlinearity is strengthened.

HAM (Homotopy analysis method), initially proposed by Liao
(2009), is a powerful method to solve non-linear problems. In
recent years, this method has been successfully used in several
areas of mathematics, including optimization (Thomas et al., 2012)
and nonlinear root finding (Abbasbandy, 2006). Furthermore,
there are approaches derived from homotopy methods that can
find global optimum in situations where other deterministic
methods cannot (Thomas et al., 2012; Kuno and Seader, 1988).
Essentially, parameter identification is often considered as an
inverse problem (Baker et al., 2010) and biological network
parameter estimation is thus a nonlinear inverse problem. How-
ever, a nonlinear inverse problem is often ill posed or ill condi-
tioned (Eng and Ugler, 2005), in particular unstable with respect to
the data noise (Liao, 2009). Iterative regularization methods are an
effective method to overcome the instability of solution in non-
linear inverse problems, at the same time, the specific regulariza-
tion term has the result of noise suppression (Cui et al., 2005).

In this study, a two stage Bregman regularization homotopy
method is introduced as a novel strategy into biological network
parameter estimation to find the global solution. For saving
homotopy tracing time, the algorithm gives full play to comple-
mentary advantages of continuous and discrete homotopy, and
imports variable regularly factor to reflect the forecast value and
the experimental value approaching degree. At last, the algorithm
is tested on three metabolic networks to show the effectiveness.

2. Method

2.1. Parameter estimation

Generally, metabolic networks are modeled using ODEs (ordin-
ary differential equations) to describe the kinetics of an enzymatic
reaction (Kutalik et al., 2005):

dX=dt ¼ f ðx;pÞ ð1Þ
where x, p and f denote the metabolite concentration, the para-
meter set to be estimated, and the reaction rate function, respectively.

The reaction rate function f is nonlinear and complex with p.
Integrating both sides of Eq. (1) gives

XðpÞ ¼
Z

f ðx; pÞdt ð2Þ

where X(p) may only have numerical solutions. Parameter estima-
tion often views as an optimization problem that aims to find the
parameters which give the best fit to a set of experimental data by
minimizing an error function (based on the discrepancy between
the observed data and the simulated model). So the optimal object
function for parameter estimation can be written as:

min JðpÞ ¼ ∑
N

j ¼ 1
∑
n

i ¼ 1
jjXeiðtjÞ�Xiðtj; pÞjj2=X2

ei max

Subject to : dXi=dt ¼ f iðt; pÞ
pLopopU ð3Þ

where Xei(tj) is the experimental data for the ith component at
t¼tj, Xi(tj,p)is the computed concentration for the ith component
at t¼tj, n is the number of ODEs and N is number of sampling data.
pL and pU are the lower and upper bound constraints on the
parameter p. tiATC[0,T] describes the time associated with the
experimental data.

2.2. Bregman regularization method

For highly nonlinear inverse problem, a small change in measure-
ment can lead to an enormous change in the estimated model (Engl
et al., 1996) and the data noises make it worse. The regularization
method is usually required for overcoming the ill-conditioned, and
Tikhonov's regularization term is one of the most widely used
regularization methods (Silva Neto and Cella, 2006). In order to
achieve the purpose of noise suppression simultaneously, Bregman
distance as an option to Tikhonov has been applied to regularization
algorithm (Tan et al., 2006; Osher et al., 2005). There are three
popular types of Bregman distance functions:

B1ðx; yÞ ¼ jjx�yjj2 ð4Þ

B2ðx; yÞ ¼ ∑
n

i ¼ 1
½xi log ðxi=yiÞ�xiþyi� ð5Þ

B3ðx; yÞ ¼ ∑
n

i ¼ 1
½� log ðxi=yiÞþxi=yi�1� ð6Þ

Inspired by reference (Tan et al., 2006), using the Bregman distance
B3 to modify the object function Eq. (3) gives:

min JðpÞ ¼ ∑
N

j ¼ 1
∑
n

i ¼ 1
jjXeiðtjÞ�Xiðtj; pÞjj2=X2

ei maxþαB3ðp; pnÞ ð7Þ

where α is the regularization coefficient and pn is a priori estimate for
p. After adding the regularization term, the objective function
critically depends on α. When α is close to zero, Eq. (7) reverts to
Eq. (3). As α approaches infinity, pn becomes the solution of Eq. (3).

3. Homotopy method

It is difficult to obtain analytical solutions for nonlinear ODEs
arising from physical systems (Odibat, 2010). Although perturba-
tion quantity techniques have been proposed to help us under-
stand nonlinear phenomena, they are invalid for strong nonlinear
problems. Since Liao (Liao, 2009) proposed the homotopy analysis
method, many types of nonlinear problems have been solved by
homotopy (Molabahrami and Khani, 2009), especially nonlinear
inverse problems (Cao and Han, 2011). Homotopy methods can
reach a solution by tracing a path from a fairly arbitrary initial
point (Kuno and Seader, 1988). More importantly, homotopy
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