
When can a single-species, density-dependent model capture the
dynamics of a consumer-resource system?

Sara A. Reynolds a,n, Chad E. Brassil b

a Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, NE, USA
b School of Biological Sciences, University of Nebraska, 416 Manter Hall, Lincoln, NE, USA

a r t i c l e i n f o

Available online 5 September 2013

Keywords:
Continuous-time
Functional response
Handling time
Logistic model
Smith model

a b s t r a c t

Single-species population models often include density-dependence phenomenologically in order to
approximate higher order mechanisms. Here we consider the common scenario in which density-
dependence acts via depletion of a renewed resource. When the response of the resource is very quick
relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-
dependent model. Time scale separation is used to show analytically how the shape of the density-
dependent relationship depends on the type of resource and the form of the functional response.
Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and
saturating functional responses. In some cases, we derive familiar forms of single-species models, adding
to the justification for their use. In other scenarios novel forms of density-dependence are derived, for
example an abiotic resource and a saturating functional response can result in a nonlinear density-
dependent relationship in the associated single-species model of the consumer. In this case, the per
capita relationship has both concave-up and concave-down sections.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Single-species models have a long tradition in ecology. They
have been used to make predictions about empirical populations,
informing management decisions such as those concerning sus-
tainable harvesting (Guthery and Shaw, 2012). Additionally, they
serve as fundamental components of more complex models, such
as food web models or models of species interactions. Single-
species models are, however, simplifications of a complex reality.
In the field, the species being modeled is just one member of a
large, interacting ecosystem, which consists of many other species
and nutrients that are not explicitly referenced in the model. Even
in a laboratory setting, where the researcher can limit the number
of species and types of interactions, a single-species model does
not explicitly take into account the dynamics of the nutrients
which the organism must consume in order to survive. Instead,
single-species models, such as the logistic model, attempt to
capture direct and indirect interactions with other species by
incorporating their effects into an abstract concept such as a
carrying capacity.

A diverse set of single-species models, both continuous-time
and discrete-time models have been proposed (Brannstrom and
Sumpter, 2005; Sakanoue, 2007; Wu et al., 2009). Arguably, the
most widely used model is the Verhulst–Pearl logistic (Verhulst,
1838; Pearl and Reed, 1920), which assumes a linear decrease in
the per capita growth rate with increasing density. Various justi-
fications for the logistic model have been made (Thornley et al.,
2007); however, they are not without controversy (Ginzburg,
1992; Berryman, 1992). Typical textbook derivations simply posit
a linear relationship between per capita growth rate and density as
an approximation (Begon et al., 2007; Gotelli, 2008). In general,
phenomenological single-species models lack mechanistic expla-
nations for their functional form. However, there have been
periodic efforts to derive single-species models on first principles.
A more explicit spatial derivation of the logistic equation consi-
ders individuals as competing, overlapping circles on a surface
(Royama, 1992), although the derivation is vague as to the identity
and dynamics of that for which individuals are competing. The
discrete-time Ricker model has found mechanistic justification
through several derivations, including one in which adult fish
cannibalize juveniles (Gurney and Nisbet, 1998) and another in
which it approximates a stochastic individual-based model for a
mite (Sumpter and Broomhead, 2001). A series of discrete-time
models have been derived based on a spatially implicit framework
of safe sites (Brännström and Sumpter, 2005). Additionally, several
well-known discrete-time models have been derived through the
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time scale analysis of underlying within year consumer-resource
dynamics (Geritz and Kisdi, 2004). The continuous-time within
year dynamics provide a mechanistic explanation for the cyclic
and chaotic dynamics that can be expressed in single-species
discrete-time models.

Density-dependence is a central feature of many single-species
models, and indeed even an increasingly important feature of
age-structured models (Neubert and Caswell, 2000). Nonetheless,
there is a large and sometimes inconsistent lexicon associated
with the concept of density-dependence (Herrando-Perez et al.,
2012). Here we define density-dependence as the effects of
population density upon population per capita growth rate.
Density-dependence can be described by the shape of a per capita
growth rate (PCGR) curve which is a plot of population per capita
growth rate, dN=ðN dtÞ, versus population density, N, a relationship
that can be examined empirically and modeled mathematically.
For example, the PCGR curve of the logistic model is linear. Since
per capita growth rate can be thought of as a function of density,
dN=ðN dtÞ ¼ f ðNÞ, a single-species PCGR curve implies the single-
species model, dN=dt ¼ f ðNÞN. Density-dependence can arise for
various reasons, including changes in the availability of nesting
sites, nutrients, or suitable mates with density. As in Abrams
(2009a), we limit the consideration of density-dependence to that
due to the availability of consumable, renewable resources, such as
prey items or nutrients.

In a single-species, density-dependent model a real-world
ecosystem, which may consist of n interacting species, has been
reduced from an n-dimensional system to a one-dimensional
equation. In essence, a reduction in system dimensionality is
occurring. Schaffer (1981) refers to the reduction of a real-world
ecosystem with n interacting species to a mathematical model
with mon interacting species as “ecological abstraction”. In this
sense, single-species models are the limiting case of ecological
abstraction. This perspective raises a few questions: (1) What
methods can be used to abstract a single-species model from a
multi-dimensional system? (2) What functional forms of single-
species models are constructed from these methods of abstrac-
tion? (3) Are there ecological situations in which these methods
are better at capturing the actual dynamics of the organism of
study? We consider these questions in the framework of contin-
uous-time, deterministic, unstructured models; in other words
those lacking age-structure or size-structure. Such models are a
natural first consideration, as methods of incorporating density-
dependence in single-species models often become the basis of
how density-dependence is incorporated into more complex
models.

Ideas about how a consumer-resource system can be translated
into consumer single-species dynamics have been explored by
making substitutions determined from equilibrium relationships
(Mac Arthur, 1970; Schoener, 1973). While these approaches were
not discussed as time scale separation problems, for the best
accuracy they inherently assume that the resource dynamics take
place on a much shorter time scale than the consumer dynamics
(Mac Arthur, 1970). Schaffer (1981) develops a general method of
abstraction that determines growth equations for mon species
from a known n-dimensional ecosystem. The abstracted growth
equations most accurately describe the growth seen in the
full system when the dynamics of the omitted species occur on
relatively fast time scales (Schaffer, 1981) and the species of focus
are near their equilibrium values. Using Schaffer's method, a
single-species model abstracted from an n-dimensional ecosystem
is always of logistic form. Despite the wide use of the logistic
model, the existence of several data sets with non-logistic beha-
vior has spurred the development of various alternative single-
species models (Wu et al., 2009; Tsoularis and Wallace, 2002).
While Schaffer was able to make many insightful remarks on the

topic of ecological abstraction, his method is not flexible enough
to capture the nonlinear PCGR relationships observed in some
empirical systems (for example Forrester et al., 2011). However,
not all past single-species model abstraction methods have
resulted in the logistic model; in Thieme (2003) a single-species
model with a convex PCGR curve is abstracted from a consumer-
resource system via time scale separation. Furthermore, recent
work by Abrams (2009a,b) suggests a method of abstraction that
can produce nonlinear PCGR curves.

Abrams' approach differs from those mentioned above. Instead
of using the equilibrium values of an original two-dimensional
consumer-resource system, he uses the equilibrium values that
result from applying a constant per capita harvest rate to the
consumer. By relating the harvest rate to the consumer growth
rate, Abrams abstracts a single-species density-dependence curve.
Since Abrams' density-dependence curves are displayed in a
nonstandard format, which has hindered their interpretation, it
is worthwhile to discuss the implications of Abrams' work and the
format in which it is presented. Abrams (2009a) shows there are
types of consumer-resource systems that lead to the consumer
having nonlinear, i.e. non-logistic, density-dependence curves.
Furthermore, he demonstrates that there are cases where the
nonlinear density-dependence curves of the consumer cannot
even be accurately described by the curves of the theta-logistic
model (Gilpin and Ayala, 1973). While these results are clear
from Abrams' figures, unfortunately, the curves Abrams finds,
N¼ gðdN=ðN dtÞÞ, are the inverse functions of the PCGR curves
described above, dN=ðN dtÞ ¼ f ðNÞ. In some cases g is not invertible.
Moreover, it is unclear under which ecological situations the
method Abrams applies will be the most accurate in describing
actual per capita growth rate curves.

As in Thieme (2003), we formally consider the abstraction of a
single-species model from a consumer-resource system as a
separation of time scales problem. Time scale separation is a tool
used in many adaptive dynamics approaches (Abrams, 2001, 2005;
Dieckmann and Law, 1996; Geritz et al., 1996), which typically
assume that ecological processes occur on a much faster time scale
than evolutionary changes. For a few consumer-resource systems,
we explicitly identify a small parameter ε, which justifies a sepa-
ration of time scales approach under the assumption that resource
dynamics occur rapidly compared with those of the consumer.
The time scale problems considered here can be addressed more
rigorously using the technique of matched asymptotics (Edelstein-
Keshet, 2005; Logan, 2006; Lakin and Van Den Driessche, 1977)
from singular perturbation theory (O'Malley, 1991; Schaffer, 1981;
Thieme, 2003), which has also been used in describing Michaelis–
Menten kinetics (Heineken et al., 1967). As desired,
the solutions from matched asymptotics converge to the equa-
tions presented here as ε-0. By using time scale separation
to abstract single-species models from consumer-resource sys-
tems, we ground the abstraction methods of Abrams in a more
formal mathematical approach. In doing so, the ecological situa-
tions under which Abrams' approach best represents consumer
dynamics can be described. Furthermore, we calculate explicit
functional forms of single-species models abstracted from a few
particular consumer-resource systems. The models, including their
density-dependence curves and their relation to previous litera-
ture, are discussed.

2. Models and results

2.1. General approach

A consumer with population density, N, interacting with a
single resource population of density, R, is represented by the
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