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HIGHLIGHTS

e We study how topology affects the robustness and evolvability of GRNs.

e We examine the effects of varying assortativity in models of GRNs.

e As assortativity increases, robustness increases and evolvability decreases.

e Increased assortativity reduces attractor sizes, which leads to higher robustness.

¢ Increased assortativity reduces out-component sizes, which causes lower evolvability.
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ABSTRACT

Gene regulatory networks (GRNs) represent the interactions between genes and gene products, which
drive the gene expression patterns that produce cellular phenotypes. GRNs display a number of
characteristics that are beneficial for the development and evolution of organisms. For example, they
are often robust to genetic perturbation, such as mutations in regulatory regions or loss of gene function.
Simultaneously, GRNs are often evolvable as these genetic perturbations are occasionally exploited to
innovate novel regulatory programs. Several topological properties, such as degree distribution, are
known to influence the robustness and evolvability of GRNs. Assortativity, which measures the
propensity of nodes of similar connectivity to connect to one another, is a separate topological property
that has recently been shown to influence the robustness of GRNs to point mutations in cis-regulatory
regions. However, it remains to be seen how assortativity may influence the robustness and evolvability
of GRNs to other forms of genetic perturbation, such as gene birth via duplication or de novo origination.
Here, we employ a computational model of genetic regulation to investigate whether the assortativity of
a GRN influences its robustness and evolvability upon gene birth. We find that the robustness of a GRN
generally increases with increasing assortativity, while its evolvability generally decreases. However, the
rate of change in robustness outpaces that of evolvability, resulting in an increased proportion of
assortative GRNs that are simultaneously robust and evolvable. By providing a mechanistic explanation
for these observations, this work extends our understanding of how the assortativity of a GRN influences
its robustness and evolvability upon gene birth.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Huang et al., 2005). Understanding gene regulation at molecular
resolution and how it results in stable, measurable phenotypes is

Gene expression determines cellular phenotype. The regulation
of gene expression in turn governs the ability of a cell to respond
to a new environment (Gasch et al., 2000; Causton et al., 2001) or
differentiate along a particular lineage (Davidson et al., 2002;
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one of the major ongoing challenges in evolutionary and devel-
opmental biology (Davidson, 2006).

The entirety of a cell's regulatory interactions can be concep-
tualized as a gene regulatory network (GRN), where genes are
represented as nodes and regulatory interactions as edges. The
gene expression patterns that produce cellular phenotypes are
dictated by the dynamics of the GRN. Both experimental and
theoretical studies have shown that GRNs possess certain attri-
butes that contribute to the growth and perpetuation of organ-
isms. For instance, GRNs can often maintain their function in the
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face of genetic perturbation, a property known as robustness
(Wagner, 2005). Illustrative examples include gene knockout in
the yeast Saccharomyces cerevisiae (Jeong et al., 2001) and GRN
rewiring in the bacterium Escherichia coli (Isalan et al., 2008); in
both cases, genetic perturbations often fail to alter a growth
phenotype. Theoretical models of GRNs have not only recapitu-
lated this robustness (Wagner, 1994; Aldana et al., 2007), but have
shown that robustness itself is an evolvable property (Ciliberti
et al., 2007b).

Experimental (Guet et al, 2002; Hunziker et al, 2010) and
theoretical studies (Aldana et al., 2007; Ciliberti et al., 2007a) have
also shown that GRNs can respond to mutation by innovating
phenotypes, and are therefore intrinsically evolvable (Wagner,
2011). For example, a diverse set of phenotypic responses to
environmental conditions, akin to Boolean logic gates, was obtained
by rewiring synthetic 3-gene regulatory circuits in E. coli (Guet et al.,
2002). Adaptive evolution necessitates the innovation of such
phenotypes, and the ability to generate new regulatory programs
therefore confers a selective advantage (Levine and Tjian, 2003).
And, like robustness, this ability has itself been shown to be an
evolvable property in GRNs (Crombach and Hogeweg, 2008).

Extant GRNs are a product of mutation and selection, and a major
mutational force that drives their evolution is the addition of new
genes. New genes are often introduced via gene duplication (Ohno,
1970; Zhang, 2003; Conant and Wolfe, 2008), and the subsequent
regulatory and biochemical divergence of the duplicate is thought to
impact the growth and evolution of GRNs (Babu and Teichmann,
2003; Teichmann and Babu, 2004). New genes are also introduced
via de novo origination (Tautz and Domazet-LoSo, 2011), which is
now considered to be more important than previously appreciated
(Carvunis et al., 2012). In either case, the introduction of a new gene
is a perturbation that is most often detrimental (Lynch and Conery,
2000) and only rarely beneficial to the organism (Carvunis et al.,
2012). Yet, the abundance of genetic material in living organisms that
has been attributed to duplication (Lynch and Conery, 2000) and de
novo origination (Carvunis et al, 2012) is a testament to the
occasional success of these genetic perturbations. This occasional
success is mirrored in theoretical models of GRNs, which not only
find that the addition of new genes is sometimes tolerated, but also
that it may permit the exploration of novel phenotypes (Aldana et al.,
2007). However, it is not fully understood how the intrinsic proper-
ties of GRNs allow for the conservation of existing phenotypes
(robustness) while simultaneously facilitating the exploration of
novel phenotypes (evolvability).

The structural makeup of GRNs may help clarify this issue.
Several theoretical analyses have demonstrated that the robust-
ness and evolvability of GRNs are influenced by their underlying
topological properties (Variano et al., 2004; Poblanno-Balp and
Gershenson, 2011). For example, GRNs possess heavy-tailed dis-
tributions of the number of regulatory targets per gene (Babu
et al., 2004), and qualitatively similar degree distributions have
been shown to yield increased robustness to genetic perturbation
(Aldana and Cluzel, 2003) and an enhanced capacity to evolve
novel phenotypes (Oikonomou and Cluzel, 2006), as compared to
homogeneous random degree distributions.

Assortativity is a separate topological property, which can be
used to measure the tendency for pairs of connected nodes in a
network to possess similar numbers of connections (Newman,
2002). This property can vary between networks, even if they
possess identical degree distributions, and can affect their dynamical
behavior (Pomerance et al., 2009; Pechenick et al., 2012). Assorta-
tivity is known to vary among real-world networks (Newman, 2002;
Foster et al., 2010), and a recent study reported that the assortativity
of GRNs tends to be positive (i.e., assortative) (Piraveenan et al., 2012),
whereas random networks with similarly heterogeneous degree
distributions tend to be negative (i.e., disassortative) (Johnson et al.,

2010). In the context of a GRN composed primarily of transcription
factors (TFs), this positive assortativity might reflect that TFs that
regulate a large number of other TFs tend to mutually regulate each
other more often than would be expected by chance. It could also
reflect that those TFs tend not to fall under extensive regulation by
TFs that only regulate a few other TFs. The reason for the purported
assortativity of GRNs is unknown, but recent theoretical results
suggest that assortative GRNs may have an advantage over disas-
sortative GRNs due to an increased robustness to mutations in the
cis-regulatory logic of their constituent genes (Pechenick et al.,
2012).

While the robustness of a GRN influences its evolutionary
success, the observed robustness to mutation in cis-regulatory
regions (Pechenick et al., 2012) does not necessarily imply robust-
ness to other perturbations. Given the apparent assortativity of
GRNs (Piraveenan et al., 2012), and the evolutionary significance of
gene duplication (Lynch and Conery, 2000) and de novo origination
(Carvunis et al., 2012), it is important to understand whether the
assortativity of a GRN influences its robustness to such genetic
perturbations. Further, since gene birth may result in the advent of
novel phenotypes, it is also important to understand how the
assortativity of a GRN influences evolvability. Unfortunately, it is
currently not possible to address such questions in an experi-
mental system. While the construction of small synthetic regula-
tory circuits in cells is possible (Gardner et al., 2000; Elowitz and
Leibler, 2000; Purnick and Weiss, 2009), the relatively large GRNs
that are needed to vary assortativity at high resolution make the
direct testing of these questions impractical. We therefore employ
an abstract computational model of genetic regulation (Kauffman,
1969) to construct GRNs with different values of assortativity and
then assess the rates at which they: (1) conserve their existing
phenotypes following the introduction of a new gene, and
(2) innovate new phenotypes as a result of the same perturbation.
We thereby provide theoretical insight into how assortativity may
affect the robustness and evolvability of GRNs upon gene birth.

2. Methods
2.1. Boolean networks

We used Boolean networks to model GRNs (Kauffman, 1969)
(Fig. 1). In this model, genes are represented as nodes and
regulatory interactions as directed edges. These edges emanate
from nodes that are regulators and terminate at nodes that are
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Fig. 1. A Boolean network example. (A) This Boolean network is composed of
3 nodes and 4 directed edges. Each node possesses a look-up table with the signal-
integration logic that determines the dynamics of the Boolean network by defining
the expression state of the node at time t+1 as a function of the states of its inputs
at time t. For example, the signal-integration logic for node b shows how each
possible combination of expression states aq(t) and o(t) of the inputs at time t
dictate the expression state o,(t + 1). (B) Starting with initial states at t=0, the
states are updated according to the signal-integration logic until they repeat,
forming an attractor (shaded region), which is analogous to a phenotype. In this
example, the attractor length is two. For visual clarity, the size of the network
depicted here is much smaller than those used in this study.
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