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HIGHLIGHTS

» Novel method for controlling the dynamics of populations/metapopulations.

» First control method empirically shown to work for a biological metapopulation.

» The method reduces both population fluctuations as well as extinction probability.
» Biologically realistic simulations indicate the results to be widely applicable.

» We provide empirical validation for various extant theoretical studies in this area.
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Despite great interest in techniques for stabilizing the dynamics of biological populations and
metapopulations, very few practicable methods have been developed or empirically tested. We propose
an easily implementable method, Adaptive Limiter Control (ALC), for reducing the magnitude of
fluctuation in population sizes and extinction frequencies and demonstrate its efficacy in stabilizing
laboratory populations and metapopulations of Drosophila melanogaster. Metapopulation stability
was attained through a combination of reduced size fluctuations however, and synchrony at the
subpopulation level. Simulations indicated that ALC was effective over a range of maximal population
growth rates, migration rates and population dynamics models. Since simulations using broadly
applicable, non-species-specific models of population dynamics were able to capture most features of
the experimental data, we expect our results to be applicable to a wide range of species.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilizing the dynamics of unstable systems has been a major
endeavor spanning different scientific disciplines. Unfortunately,
most methods proposed in the literature require extensive a priori
knowledge of the system and/ or real-time access to the system
parameters (Scholl and Schuster, 2008). This typically makes such
methods unsuitable for controlling biological populations that are
often characterized by poor knowledge of the underlying
dynamics (see Suarez, 1999) and inaccessibility of the system
parameters. This problem was partly alleviated with the advent of
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methods that needed no a priori knowledge of the system and
perturbed the state variables rather than the system parameters
(Corron et al., 2000; Giiémez and Matias, 1993; Hilker and
Westerhoff, 2007). For example, at least in single-humped one-
dimensional maps, constant immigration of sufficient magnitude
in every generation can convert chaotic dynamics into limit cycles
(McCallum, 1992). Similar phenomena of simpler dynamics repla-
cing more complex behavior were also observed in models of
more complex systems (e.g. Astrom et al., 1996; McCann and
Hastings, 1997). However, very few of these theoretical predic-
tions have been empirically verified till date. In one experiment,
the dynamics of Tribolium populations were stabilized by low
magnitude perturbations (Desharnais et al., 2001). This method
required the empirical characterization of the chaotic strange
attractor of the dynamics, followed by computation of local
Lyapunov exponents over the entire attractor: a somewhat
daunting proposition for most application-oriented purposes.
Another empirical study on a chemostat-based three-species
bacteria-ciliate prey-predator system, implemented theoretically
calculated rates of dilution to convert chaotic dynamics into limit
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cycles (Becks et al.,, 2005). Again, the calculations leading to
the prediction of the dilution rates required fairly detailed
system-specific modeling (see Becks et al. 2005 and references
therein) and were implemented in spatially-unstructured
populations.

One of the several complications with real populations is that
they are very often spatially-structured (metapopulations), which
can lead to complex patterns and dynamics (Cain et al., 1995; Maron
and Harrison, 1997; Perfecto and Vandermeer, 2008; Turchin et al.,
1998). Not surprisingly therefore, the dynamics of metapopulations
have received wide attention, in the context of stabilization (e.g.
Doebeli and Ruxton, 1997; Parekh et al., 1998). The rationale behind
such studies was that if the dynamics of a fraction of the sub-
populations in a metapopulation can be controlled in some way,
then the stabilized subpopulations can alter the dynamics of their
neighbors and so on. Thus one could expect a cascading effect
through the metapopulation, ultimately leading to the stabilization
of the global dynamics. However, the only study using localized
perturbations on real, biological metapopulations failed to find any
effect on global dynamics (Dey and Joshi, 2007). This was attributed
to the effects of localized extinctions in the subpopulations, which
were shown to render a previously proposed method (Parekh et al.,
1998) ineffective in terms of stabilizing metapopulations. Thus,
there are no known methods that have been empirically demon-
strated to stabilize the dynamics of biological metapopulations.

One possible reason for this lack of empirical verification of
proposed control methods might be related to the multiplicity of
notions related to population stability in ecology. Even 15 years back,
a review on the subject had cataloged no less than 163 definitions
and 70 concepts pertaining to stability in the ecological literature
(Grimm and Wissel, 1997). Most proposed control methods (Corron
et al.,, 2000; Giiémez and Matias, 1993; McCallum, 1992; Sinha and
Parthasarathy, 1995; Solé et al, 1999) pertain to attainment of
stability in the form of chaos being replaced by simpler dynamics
(stable point or low periodicity limit cycles). While there have been a
number of studies demonstrating chaos, or the lack there of, in
empirical datasets (Becks and Arndt, 2008; Becks et al., 2005; Dennis
et al,, 1995; Hassell et al.,, 1976; Turchin and Taylor, 1992), many of
the methods proposed for detecting chaos suffer from their own
theoretical limitations (Becks et al., 2005; Turchin and Taylor, 1992).
Moreover, the distinction between deterministic chaos and noisy
limit cycles often does not lead to meaningful insights in terms of
practical applications like resource management or reduction of the
extinction probability of a population. Therefore, many experimental
studies have concentrated on other attributes of stability that are
relatively easier to determine, particularly in noisy systems. Two of
the attributes of population stability often investigated in these
contexts are the so called constancy (e.g. Mueller et al, 2000) and
persistence (e.g. Ellner et al, 2001). A population is said to have
greater constancy stability when it has a lower variation in size over
time, while greater persistence stability simply refers to a lower
probability of extinction within a given time frame (Grimm and
Wissel, 1997). In this study, we empirically investigate both these
attributes of population stability.

Here we propose a new method, which we call adaptive limiter
control (ALC), for reducing the amplitude of fluctuation in popula-
tion size over time. Our main motivation in proposing this method
is to come up with a scheme that would be easy to implement, and
at the same time, would be effective in terms of both constancy
and persistence of spatially -unstructured and -structured popu-
lations. We first explore the method numerically and study its
long-term behavior. We then use biologically realistic simulations
(incorporating noise, extinction and lattice effect) over a range of
biologically meaningful parameter values to demonstrate the
efficacy of our method for populations with no migration (hence-
forth called single populations) as well as spatially-structured

populations experiencing migration among the constituent sub-
populations, henceforth called metapopulations (Hanski, 1999).
We also report two separate experiments using replicate single
populations and metapopulations of Drosophila melanogaster that
validate our theoretical predictions. We further show that ALC
reduces extinction in both single populations and metapopula-
tions, albeit by different mechanisms. Finally, we compare ALC
with other control methods in the literature, and point out why
we believe ALC to be likely applicable to a wide range of
organisms.

2. Adaptive Limiter Control (ALC)

Mathematically, ALC can be represented as:

Neyp1=f(Np) if Ne > ¢ x N¢_q,
Nii1=f(c x Ne_q) if Nr<cx Ny

where N; represents the population size at generation t, f(N;) is a
function that predicts N,,; for a given N, and c is the ALC
parameter. In other words, when the population size in the
current generation goes below a threshold, defined as a fraction
c of the population size in the previous generation, individuals are
added from outside to bring the number up to that threshold. No
perturbations are made if the population size is above that
threshold. The biological interpretation of this scheme is straight-
forward: the population size in the current generation (i.e. N;) is
not allowed to go below a fraction c of the previous population
size (N,_;). As the magnitude of the control is a function of the
population size in the previous generation, the number of indivi-
duals added changes constantly. This adaptive nature of the
algorithm makes it independent of the range of the size of the
populations to be controlled, thus enhancing its applicability. ALC
belongs to the so called “limiter control” family of algorithms
(Corron et al., 2000; Hilker and Westerhoff, 2006; Zhou, 2006),
although to the best of our knowledge, this particular scheme has
not been proposed earlier in any context.

We began with an investigation of the effects of ALC on the
steady-state behavior of a simple one-dimensional population
dynamics model. As the calculation of the magnitude of ALC
involves population size over two generations, the dimensionality
of the system is increased, which makes precise analytical results
difficult. Therefore, in this study, we limit ourselves to numerical
investigations of the effects of ALC. We used the widely-studied
Ricker map (Ricker, 1954) to represent the dynamics of the
populations. This model is given as N;,1=N; exp( r (1—N/K))
where N;, r and K denote the population size at time t, per-capita
intrinsic growth rate and the carrying capacity respectively. In the
absence of any external perturbation, this two-parameter model
follows a period-doubling route to chaos with increase in the
intrinsic growth rate, r (Fig. 1A; May and Oster, 1976).
In Figs. 1 and 2A, we studied the steady-state behavior by iterating
the Ricker model in the absence of any noise for 1000 steps (larger
number of iterations did not lead to any qualitative changes in the
graphs), and plotting the final 100 values. We also computed the
fluctuation index (Dey and Joshi, 2006a) of the populations as a
measure of the corresponding constancy stability. The fluctuation
index (FI) is a dimensionless measure of the average one-step
change in population numbers, scaled by the average population
size (see Section 3.3.1 for details). As expected, when the popula-
tion settles to a stable point equilibrium, the FI is zero, but as the
population enters the two-point limit-cycle zone, the FI increases
(Fig. 1A). However, when the population becomes chaotic, the
trajectory visits a large number of points between the upper and
lower bound, which can stabilize, increase or even reduce the FI
(Fig. 1A). This demonstrates that there need not necessarily be a
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