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H I G H L I G H T S

c Statistical model is developed for jointly analyzing multiple allometries.
c It is suitable for multiple biological traits with same property or comparability.
c It takes into account the correlations among multiple traits.
c It facilitates statistical and genetic analysis for multiple allometries.
c Two examples are used to illustrate the joint analysis for multiple allometries.
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a b s t r a c t

As the reciprocal of simple allometry equation, power allometry equation can also be used to define

allometry scaling but the scaling exponent has an opposite meaning to that of simple allometry

equation. Based on this observation, a joint static allometry scaling model of entire body size on

multiple partial body size is established, which can not only simultaneously evaluate allometry scaling

of multiple partial body sizes, but also take into account the correlations among multiple partial body

sizes, facilitating subsequent statistical inference and practice. Since ontogenetic allometry may be

time-dependent, ontogenetic allometry is estimated by jointly analyzing changes of entire and multiple

partial body sizes as growth time using multivariate stepwise analysis. Joint analysis of allometry

scaling is suitable for multiple biological traits and functions with same property or comparability,

which is illustrated by two examples.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Allometry scaling, generally expressed as a power function,
describes how morphological traits of organisms change with
body size. Since the introduction of allometry scaling equation by
Huxley (1932) a number of attempts have been made by biolo-
gists to justify the broad dependence of physiological,

morphological, developmental, anatomic, life-historical, ecologi-
cal as well as evolutional factors on body size (Calder, 1984;
Enquist and Niklas, 2002; Kleiber, 1932; Niklas, 1994, 2006;
Peters, 1983; West and Brown, 2005). Among diverse allometry
scaling relationships, the most important and fundamental one is
that metabolic rate scales to the three-quarters power of the mass
of animals or plants, also known as Kleiber’s law (Kleiber, 1932).

Around Kleiber’s law, many biological and biochemical assump-
tions and models are developed, in hopes of explaining power-
allometry scaling relationships between metabolic rate and body
size. These models include fractal-like distribution network models
(West et al., 1997, 1999a, 1999b), efficient transportation network
model (Banavar et al., 1999), multi-causes model (Darveau et al.,
2002), minimal overall entropy production model (Andresen et al.,
2002), constructal theory (Bejan, 2000), cell model (Kozlowski et al.,
2003) and energy consumption model (Makarieva et al., 2003).They
offer theoretical perspectives on various possible ways to achieve
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maximum efficiency in biology under natural selection, ranging
from the heat transfer, fluid mechanics, bio-energetics, statistical
thermodynamics to physiology. Many observations, however, do
not support the universal applicability of Kleiber’s law, since power
exponents vary with different factors (Price et al., 2007), such as
temperature, physiological state, individual size and availability of
environmental resource. As a result, the power exponent of three
quarter may be explained as the average across species (Kozlowski
et al., 2003), and the improvement of existing models are required
for accurate interpretation of allometry scaling in biology.

Actually, there are the three terms of allometries available to
describe scaling relationships between different organ parts:
static allometry, ontogenetic allometry and evolutionary allome-
try (Cheverud, 1982; Klingenberg and Zimmermann, 1992; Stern
and Emlen, 1999). Static allometry represents the relative growth
between two different traits or functions in adult or at a particular
developmental stage. Ontogenetic allometry refers to the growth
trajectory of one trait relative to the other in ontogeny. Evolu-
tionary allometry is the relative size between traits across species.
In practice, static and ontogenetic allometries are evaluated by
fitting the power function and growth trajectories, while evolu-
tionary allometry can be estimated with the same methods as
those for static and ontogenetic allometries. To investigate allo-
metry scaling among multiple organ parts, separate parameter
estimations and multiple comparisons between them are usually
required. In this study, a joint analysis for allometry scaling is
proposed to simultaneously estimate scaling exponents of multi-
ple organ parts in terms of static and ontogenetic allometries.

2. Model

2.1. Static allometry

Following Huxley (1932), Huxley’s ‘‘Simple equation of allometry’’
is of the form:

x¼ a0yb0 ð1Þ

where y and x are the entire and partial body size, respectively, a0 is a
normalization constant and b0 is the scaling exponent. Furthermore, b0

can be denoted as the ratio of relative growth rates between partial
and entire body sizes:

b0 ¼
ydx

xdy
¼

dx

xdt

�
dy

ydt
ð2Þ

Let

b¼
xdy

ydx
¼

dy

ydt

�
dx

xdt
ð3Þ

Apparently, b also reflects the allometry scaling between
partial and entire body sizes, but it has an opposite meaning
against b’. Since Eq. (3) is equivalent to:

dy=dx¼ b y=x ð4Þ

by solving this differential equation, a new equation of allometry
scaling can be established as:

y¼ axb ð5Þ

To investigate allometry scaling of m partial body sizes to
entire body size, a joint system of differential equations can be
formed on the basis of Eq. (4):

@y=@x1 ¼ b1y=x1

@y=@x2 ¼ b2y=x2

. . .

@y=@xm ¼ bmy=xm

,

8>>>><
>>>>:

ð6Þ

where @y=@xi ¼ biy=xi i¼ 1, 2,. . .,mð Þ holds when fixing all the
independent variables except for xi. The solution for this system of
equations takes the form:

y¼ b0xb1

1 xb2

2 . . . xbm
m ð7Þ

where bi is partial scaling exponent of the ith partial body size to
entire body size.

We define Eq. (7) as joint allometry scaling model, whose form
is exactly of the same as the Cobb–Douglas function (Cobb and
Douglas, 1928). This joint allometry scaling model can not only
simultaneously estimate the scaling exponents of multiple partial
body sizes to entire body size, but also take into account the
correlations among the m partial body sizes, facilitating subse-
quent statistical analysis, such as statistical comparisons of
allometry scaling between different partial body sizes and genetic
analysis for allometry scaling of multiple partial body sizes to
entire body size, among others.

2.2. Ontogenetic allometry

After the partial and entire body sizes are observed at given time
points, the static scaling exponents at different ontogenetic stages
or growth points can be estimated according to the corresponding
static allometry scaling model. The scaling exponents may be
different due to ontogenetic stages or growth points, so ontogenetic
allometry scaling can be characterized by fitting changes of these
scaling exponents with growth time. In practice, however, only a
limited number of individuals are observed at a given time point
and such a small sample is not enough to obtain a reliable estimate
of scaling exponent at each time point. In this case, we can first
establish the functions of partial and entire body sizes on growth
time by using multivariate analysis, and then estimate the ontoge-
netic scaling exponents b(t) by:

bðtÞ ¼ xðtÞdyðtÞ=yðtÞdxðtÞ ð8Þ

where x(t) and y(t) is the functions of partial and entire body sizes
on growth time, respectively.

3. Examples

3.1. Static allometry scaling of carcass traits in beef cattle

During the period of slaughter, living weight and fourteen
slaughtering and carcass traits are collected on 1029 individuals.
According to Institutional Meat Purchase Specifications (IMPS) for
Fresh Beef guidelines, the live weight (y) is measured before
slaughter after fasting 24 h; Carcass weight (x1) is done after
slaughter and bloodletting by eliminating the hide, head, feet, tail,
entrails and gut fill; Net weight of beef (x2) is that of carcass after
removing the bones, ligaments and breast; The high quality beef
(x3) includes tenderloin, striploin, ribeye and high rib. The weight
of bones (x4) is that of whole bones besides head, tail and feet. The
cowhide (x9) does not include the parts of head and tail. The red
offal (x6), pizzle (x7), oxtail (x8), white offal (x10), mesentery and
omentum (x11), leaf fat (x12), kidney (x13) and diaphragm (x14) are
collected by removing the surrounding fat and contents. Among
that, the red offal (x6) includes heart, liver and lung; the white
offal (x10) consists of stomach and intestinal. The intramuscular
fat (x5) is obtained from the sample of ribeye muscle.

The animals are randomly sampled from commercial popula-
tions of seven breeds in beef cattle. They are fed with three kinds
of feedstuffs and slaughtered from 13 to 22 months old. In order
to investigate the effect of breeds, feedstuff and months old of
slaughter, we separately analyze the original and modified data-
sets. In the modified dataset, every trait is adjusted for breed,
feedstuff and month old of slaughter.
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