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H I G H L I G H T S

c We extend the classical result of Fisher from two alleles to multiple alleles.
c We show that the advantageous allele has a positive propagation speed cn.
c We show that traveling wave solutions with speed c exist for 9c9Zcn.
c Under certain conditions, we show that cn has an explicit formula.
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a b s t r a c t

This paper extends the classical result of Fisher (1937) from the case of two alleles to the case of

multiple alleles. Consider a population living in a homogeneous one-dimensional infinite habitat.

Individuals in this population carry a gene that occurs in k forms, called alleles. Under the joint action of

migration and selection and some additional conditions, the frequencies of the alleles, pi ,i¼ 1, . . . ,k,

satisfy a system of differential equations of the form (1.2). In this paper, we first show that under the

conditions A1A1 is the most fit among the homozygotes, (1.2) is cooperative, the state that only allele A1

is present in the population is stable, and the state that allele A1 is absent and all other alleles are

present in the population is unstable, then there exists a positive constant, cn, such that allele A1

propagates asymptotically with speed cn in the population as t-1. We then show that traveling wave

solutions connecting these two states exist for 9c9Zcn. Finally, we show that under certain additional

conditions, there exists an explicit formula for cn. These results allow us to estimate how fast an

advantageous gene propagates in a population under selection and migration forces as t-1. Selection

is one of the major evolutionary forces and understanding how it works will help predict the genetic

makeup of a population in the long run.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In 1937, R.A. Fisher studied the traveling wave solutions of the
equation

ut ¼ duxxþmuð1�uÞ,

in order to study the propagation of an advantageous gene in a
population living in a homogeneous one-dimensional infinite
habitat (Fisher, 1937). He showed that traveling wave solutions
of speed c exist for 9c9Z2

ffiffiffiffiffiffiffi
dm
p

. Kolmogoroff et al. (1988) studied
the equation

ut ¼ duxxþ f ðuÞ,

where f satisfies the conditions

f AC1
½0,1�, f ð0Þ ¼ f ð1Þ ¼ 0, f ðuÞ40 in ð0,1Þ,

and f 0ðuÞr f 0ð0Þ in ½0,1�: ð1:1Þ

They proved, among other things, that traveling wave solutions of
speed c exist for 9c9Zcn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
df 0ð0Þ

p
and that cn is the asymptotic

speed of propagation of the advantageous gene. This equation is
now called Fisher’s equation.

Fisher’s equation is based on the assumption that certain gene
resides at an autosomal locus with two alleles A1 and A2. Let pi be
the frequency of allele Ai. Then, assuming that genotype A1A1 is
more fit than genotype A2A2, fitness of the heterozygote A1A2 is
between the homozygotes, population density is spatially indepen-
dent, and Hardy–Weinberg equilibrium holds, it can be shown that
p1 satisfies Fisher’s equation (Aronson and Weinberger, 1975, 1978).
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The papers of Fisher and Kolmogoroff, Petrovsky, and Piscoun-
off prompted a flurry of research activities in the area of reaction–
diffusion equations. For Fisher’s equation, Aronson and
Weinberger (1975, 1978) proved that cn is indeed the asymptotic
speed of propagation of the advantageous gene A1 under weaker
assumptions than (1.1). The purpose of this paper is to extend
Fisher’s and Aronson and Weinberger’s results to the case of
multiple alleles.

Suppose there are k alleles residing at the locus; then there are
kðkþ1Þ=2 genotypes AiAj,i,j¼ 1, . . . ,k, where AiAj ¼ AjAi. Let the
fitness (or reproductive success rate) of genotype AiAj be denoted
by rij. Suppose the dispersal rate is the same for all individuals
(scaled to one). Fife (1979) and Nagylaki (1975, 1989) showed
that under the assumption that both migration and selection are
weak, the allele frequencies pi, i¼1,y,k, satisfy the reaction–
diffusion system

@pi

@t
¼
@2pi

@x2
þpiðri�rÞ, i¼ 1, . . . ,k, ð1:2Þ

where ri ¼
P

rijpj is the marginal fitness of allele Ai and
r¼

P
ripi ¼

P
rijpipj is the mean fitness of the population.

For the rest of this paper, we let R¼ ðrijÞ be the fitness matrix
which is symmetric since AiAj is the same as AjAi. Since

P
pi ¼ 1,

(1.2) is a system of k�1 equations. It is easy to see that f i :¼
piðri�rÞ is a cubic polynomial in pi and is unchanged if we add a
constant to all the rij. By relabeling the alleles, we assume that

rkkorðk�1Þðk�1Þo � � �or22or11: ð1:3Þ

Strict inequalities are assumed in (1.3) to avoid degeneracies. We
also assume in this paper that the rij’s are distinct.

This paper is organized as follows. In Section 2, we summarize
some existing theories which will be used to study (1.2). In
Section 3, we show under the conditions that (1.2) is cooperative,
the state that only allele A1 is present in the population is stable,
and the state that allele A1 is absent but all other alleles are
present in the population is unstable, then there exists cn40 such
that A1 propagates asymptotically with speed cn in the population
as t-1. Furthermore, monotone traveling wave solutions con-
necting these two states exist for 9c9Zcn. In Section 4, we impose
additional conditions on the fitness matrix such that (1.2) is
linearly determinate, implying that there is an explicit formula for
cn. Numerical examples are given in Section 5. Section 6 is
conclusion where we summarize our results and discuss other
issues not addressed in this paper.

2. Mathematical preliminaries

Consider the following reaction–diffusion system

@ui

@t
¼ di

@2ui

@x2
þFiðu1,u2, . . . ,ukÞ, di40 for 1r irk: ð2:1Þ

Let F¼ ðF1, . . . ,FkÞ be a C1
� function that satisfies Fð0Þ ¼ 0,FðbÞ ¼ 0

for some constant vector bb0 (i.e., bi40 for each i). Let
Cb ¼ fu : 0ruirbi, for i¼ 1, . . . ,kg. Given u0ACb, we assume that
a unique smooth solution to (2.1) with initial condition u0 exists
for all t40. System (2.1) is said to be cooperative in O�Rk if

@Fi

@uj
ðuÞZ0 for all uAO and ia j: ð2:2Þ

Comparison principle holds for cooperative systems. This means
that if u0ðxÞrv0ðxÞ on R, then solutions of (2.1) with initial
conditions u0 and v0 satisfy uðx,tÞrvðx,tÞ on R for as long as
both solutions exist. It can be shown that if (2.2) holds in Cb, then
Cb is an invariant set with respect to (2.1). In other words, if initial
condition lies in Cb, then solutions of (2.1) lie in Cb for t40.

Let us assume further that F does not vanish for any other
vector in Cb besides 0 and b, and that 0 is unstable and b is
stable with respect to the system du=dt¼ FðuÞ. Let Q t be the
time—t map of system (2.1). That is, given uACb, Q t½u� is the
solution of (2.1) at time t40 with u as the initial condition. Then
it is clear that Theorems 3.1 and 3.2 in Lui (1989) are valid which
imply that there exists cn

t40 such that if 0ru05b, u0 is non-
trivial and has compact support, unþ1 ¼Q t½un� for nZ0, then for
any E40

lim
n-1

max
9x9Zn½cn

t þ E�
9unðxÞ9

" #
¼ 0: ð2:3Þ

Also, for any xb0, there is a positive constant Rx such that if
u0Zx on an interval of length 2Rx, then for any E40

lim
n-1

max
9x9rn½cn

t�E�
9b�unðxÞ9

" #
¼ 0: ð2:4Þ

The constant cn
t is commonly called the asymptotic speed of

propagation or the spreading speed in theoretical ecology. Once
we verified that (2.3) and (2.4) hold, we can apply (Weinberger
et al., 2002, Theorem 4.1) to obtain the following theorem.

Theorem 2.1 (Asymptotic speed of propagation). Suppose

F¼ ðF1, . . . ,FkÞ is a C1-function that satisfies (i) there exists bb0
such that Fð0Þ ¼ 0,FðbÞ ¼ 0, (ii) condition (2.2) holds in Cb, (iii) F does

not have any other zero in Cb besides 0 and b, and (iv) 0 is unstable and

b is stable with respect to the system du=dt¼ FðuÞ. Then there exists

cn40 such that given 05x5b, there exists Rx40 such that if the

initial condition u0ACb has compact support, exceeds x on an interval of

length greater than 2Rx, then (2.3) and (2.4) hold with n replaced by t, cn
t

replaced by cn :¼ cn

1, and unðxÞ replaced by uðx,tÞ, the solution of (2.1).

Remark 2.2. In Theorem 2.1, the condition that u0 has to exceed
x on a sufficiently large interval is called the threshold condition.
It may be replaced by the condition u0 is positive on an open
interval if Q t satisfies Q t½ru�ZrQ t½u� for all 0rrr1,t40 and
any function uACb.

The following theorem follows from Li et al. (2005, Theorem
4.1) since Cb does not contain any other equilibrium besides 0 and
b.

Theorem 2.3 (Existence of traveling wave solutions). Let the con-

ditions of Theorem2.1 hold. Then for cZcn, there exists a nonincreas-

ing function wcðzÞ such that wcðx�ctÞ satisfies system (2.1),
wcð�1Þ¼ b and wcð1Þ ¼ 0. The function wcðzÞ is called a traveling

wave solution with speed c.

Remark 2.4. Let wcðzÞ be the traveling wave solution in Theorem
2.3 and let wcðzÞ ¼wcð�zÞ. Then wcðzÞ is a nondecreasing traveling
wave solution which exists for cr�cn with wcð�1Þ¼ 0 and
wcð1Þ ¼ b. Therefore, monotone traveling wave solutions exist
for 9c9Zcn.

We now turn to the question of linear determinacy which
means that the asymptotic speed of propagation, cn, for the
nonlinear system (2.1) is the same as that of the linear system

@v

@t
¼D

@2v

@x2
þF0ð0Þv, ð2:5Þ

where D¼ diagðd1, . . . ,dkÞ and F0ðuÞ is the Jacobian matrix of F
evaluated at u. This concept is important because the asymptotic
speed of propagation for (2.5) can be computed so there is an
explicit formula for cn if linear determinacy holds (Weinberger
et al., 2002, Section 4). Because of condition (2.2), the matrix F0ð0Þ
has nonnegative off-diagonal entries. Suppose it is also irreduci-
ble. (A k� k matrix is said to be irreducible if the set f1, . . . ,kg
cannot be split into two nonempty disjoint subsets with the
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