ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics

F. García-Camacho a,*, A. Sánchez-Mirón a, E. Molina-Grima A, F. Camacho-Rubio b, J.C. Merchuck C

- ^a Department of Chemical Engineering, University of Almería, Almería, Spain
- ^b Department of Chemical Engineering, University of Granada, Granada, Spain
- ^c Department of Chemical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

ARTICLE INFO

Article history:
Received 21 June 2011
Received in revised form
8 March 2012
Accepted 12 March 2012
Available online 28 March 2012

Keywords: Microalga Photoinhibition Photosynthesis Photoacclimation Model

ABSTRACT

In this study, an extension and actualization of a dynamic model of photosynthesis, previously published (Camacho Rubio et al., 2003), is presented. This model uses the concept of Photosynthetic Unit (PSU). In it, the processes of excited PSU net disappearance rate, photoinhibition and damaged PSU repair have been redefined in the context of photochemical and non-photochemical quenching. The phenomenon of photoacclimation in microalgae has been extensively incorporated into this model, significantly improving its prediction capabilities. A significant number of previously reported experimental results are successfully interpreted by the novel formulation: 1. Photosynthetic response of cells photoacclimated to different constant continuous irradiances (photoacclimated cells); 2. Short-term photosynthetic response of cells non-photoacclimated to different constant continuous irradiances (non-photoacclimated cells); 3. Kinetics of the photoacclimation response; 4. Photosynthetic response under intermittent light. It is expected that this model will contribute notably to the simulation of industrial algal mass cultures.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of photosynthesis in bioreactors are important for both basic science and the bioprocess industry. Various and highly sophisticated models of this process are found in the literature.

The actual well-known behaviour of photosynthetic cultures is not easily represented by simple kinetic expressions: this is especially true so when the dynamic behaviour of these cultures is considered. Therefore, the mathematical models of photosynthesis that are currently available are based on the lumping of a large number of biochemical reactions into simpler steps or into hypothetical concepts. The selection of a model is, thus, the result of the compromise between the known biochemical steps and the computational burden resulting from complex mathematical formulation.

There is a group of 'physiological' models attempting to represent the dynamic behaviour of photosynthetic cells and to propose approximations for the mechanism operating inside these cells, a mechanism associated with their capacity to adapt to different illumination intensities. These models express the dynamics of a photosynthetic culture taking into account a considerable amount

of variables. In addition to the obvious (a carbon source and light), various substrates that algae require for growth, such as nitrate, phosphate and intracellular concentrations of chlorophyll-a, the extent of light-damaged protein D1 in Photosystem II (PSII), the nitrogen and carbon content in the cells, etc. are all considered (Pahlow and Oschlies, 2009; Marshall et al., 2000; Geider et al., 1998; Ross and Geider, 2009; Harmon et al., 1997). Usually, those mechanistic models are based on a certain cycle, e.g., the D1 damage and repair cycle (Marshall et al., 2000) or they follow a certain strategy, such as an optimal allocation of energy and nutrients during cell activities: nutrient uptake, light harvesting and growth (Ross and Geider, 2009; Pahlow, 2005; Pahlow et al., 2008; Shuter, 1979). The goal of those advanced models is to represent the physiology of the photosynthetic cells. Furthermore, some of them target the modelling of photosynthesis in the sea and aim at understanding the marine environment and the sustainability of human-originated changes (Ross and Geider, 2009; Pahlow, 2005; Pahlow et al., 2008; Moore et al., 2006; Pahlow and Vézina, 2003).

In addition to those mentioned above, there is another class of models based on the concept of the 'photosynthetic unit' (PSU), also called 'photosynthetic factories' (Camacho Rubio et al., 2003; Zonneveld, 1997; Eilers and Peeters, 1988; Han, 2002; Megard et al., 1984; Prézelin, 1981; Zonneveld, 1998) which are instrumental in representing the dynamics of the photobioreactors.

^{*} Corresponding author. Tel./fax: +34 9500 15484. E-mail address: fgarcia@ual.es (F. García-Camacho).

Nomenclature	qE	energy-dependent quenching
Nomenciature	qL qI	photoinhibitory quenching
total and anticking of DCH (DCH)	_	state-transition quenching
a total concentration of PSUs (PSUs	-	respiration rate (mg O_2 cell ⁻¹ s ⁻¹)
a* concentration of activated PSUs (PS	os een)	disappearance rate of activated PSU due to photo-
a_f concentration of functional PSUs (F		chemical quenching (PSU cell $^{-1}$ s $^{-1}$)
$a_{max,min}$ maximum or minimum total conc		formation rate of non-functional PSU (PSU cell $^{-1}$ s $^{-1}$)
$(PSUs \cdot cell^{-1})$	r_i	
a_{nf} concentration of non-functional PS		maximum disappearance rate of activated PSU due to
a ^o concentration of non-activated PSU		photochemical quenching (PSU cell ⁻¹ s ⁻¹)
ATP adenosine triphosphate	r_p	rate of PSUs activation (PSU cell ^{-1} s ^{-1}) reparation rate of non-functional PSU (PSU cell ^{-1} s ^{-1})
c concentration of chlorophyll a per ce		
C _L dissolved oxygen concentration (m		time (s)
C_L^* solubility of oxygen in culture med		duration of light/dark cycle (s)
(i.e., 8 mg $O_2 L^{-1}$)	t_d	length of the dark period within one light/dark
C _{Lobs} measured dissolved oxygen concentre		cycle (s)
D1, D2 proteins of the PSII	t_f	duration of illumination (s)
HL high light or irradiance	<i>X</i> *	fraction of functional activated PSUs (dimensionless)
I irradiance ($\mu E m^{-2} s^{-1}$)	X_b	cell concentration (cells L^{-1})
I_c irradiance constant in Eq. (13) (μ E		fraction of non-functional PSUs (dimensionless)
K_1 rate constant of photoacclimative of	changes in cellular x ⁰	fraction of resting PSUs (dimensionless)
chlorophyll a in Eq. (14) (s ⁻¹)		
k_a kinetic coefficient in Eq. (1) (m ² PS		letters
K_{Chla} rate constant of photoacclimative of	changes in cellular	
chlorophyll a in Eq. (15) (s ⁻¹)	eta	species-dependent characteristic frequency related to
K_{chla}^* apparent rate constant of photoac	climative changes	the maximum specific rate of photosynthesis (s^{-1})
in cellular chlorophyll a in Eq. (16)	(s^{-1}) ϕ	dimensionless time defined by Eq. (43)
K_D characteristic delay time in Eq. (31)	(s^{-1}) v	frequency of the light/dark cycle (s ⁻¹)
k_i rate constant in Eq. (6) (μ E m ⁻² s ⁻	$^{1})^{-n}$ cell m ⁻² s ⁻¹ κ	pseudo-constant defined by Eq. (33) (dimensionless)
$K_L a$ volumetric oxygen transfer coefficient		response time of oxygen probe (s^{-1})
k_{nf} constant in Eq. (8) (PSUs · cell ⁻¹)	κ_i	rate pseudo-constant of photodamage defined by
k_p proportionality constant in Eq. (31)	(units dependent	Eq. (6) (s^{-1})
on P_m)	κ_{nf}	pseudo-constant defined by Eq. (28) (dimensionless)
K _{PSU} rate constant of photoacclimative	e changes in PSU κ_r	pseudo-constant defined by Eq. (27) (s ⁻¹)
concentration in Eq. (18) (s^{-1})	- ',	excitation requirement ($\mu E PSU^{-1}$)
k_r maximum rate of the recovery proces	ss (PSUs cell ⁻¹ s ⁻¹) ξ	cellular absorption cross-section (m ² cell ⁻¹)
K_s^* constant in Eq. (4) (PSUs cell ⁻¹)	σ	chlorophyll-specific absorption-cross section
LL low light or irradiance	v	$(m^2 \text{ pg Chl}a^{-1})$
m maintenance metabolic rate, $0.1P_m$	(s^{-1}) χ	true chlorophyll-specific absorption-cross section
N Avogadro's number	χ ,	$(m^2 \text{ pg Chl}a^{-1})$
NADPH nicotinamide adenine dinucleotide	phosphate Ω	PSUs or Chla concentration
NPQ non-photochemical quenching	ω	rate constant of photorespiration $(0.5P_m)$
P gross photosynthesis rate (mg O_2 c	$ell^{-1} s^{-1}$) α	oseudo-constant defined by Eq. (25) (μ E m ⁻² s ⁻¹)
P_{ave} fractional photosynthetic producti		Coefficients of respiration rate for light (L) and
an illumination cycle (dimensionles		darkness (D) defined by Eq. (33) (dimensionless)
<i>P–I</i> photosynthesis–irradiance curve	,	dariances (b) defined by Eq. (33) (difficultionics)
P_m maximum rate of photosynthesis (1)	$mg O_2 cell^{-1} s^{-1}$	into
P_{obs} observed-photosynthesis rate (mg)		ιρις
P_q photochemical quenching	·	
P_R photorespiration rate (mg O ₂ cell ⁻¹	(s^{-1}) ad	photoacclimated
PSU photosynthesis unit	J	final or functional
PSU* activated PSU	max	maximum
PSU _f functional PSU	min	minimum
PSU_{nf} damaged or non-functional PSU	nf	non-functional
PSU ⁰ resting PSU	0	initial
q size of PSU (pg Chla PSU ⁻¹)		
y Size of 100 (pg cinu 100)		

They do not aim at describing the physiology of the cell, but rather the behaviour of the algal culture. Here, the main variable considered is the light intensity, which is usually the limiting substrate in dense cultures, such as those featuring in industrial production. It is assumed that all the other substrates are provided at such rates that they are in excess and do not need to be taken as variables.

No PSU-based models that contemplate photoacclimation are available. It seems, therefore, that the development of an extended PSU-type model, taking into account the dynamics of photoacclimation, the effect of non-photochemical quenching as a response to high irradiation, as well as other aspects (e.g., dark respiration), is an important contribution to the advancement of the science-based engineering design of photobioreactors.

Download English Version:

https://daneshyari.com/en/article/4496680

Download Persian Version:

https://daneshyari.com/article/4496680

<u>Daneshyari.com</u>