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a b s t r a c t

The complexity of biochemical systems, stemming from both the large number of components and the

intricate interactions between these components, may hinder us in understanding the behavior of these

systems. Therefore, effective methods are required to capture their key components and interactions.

Here, we present a novel and efficient reduction method to simplify mathematical models of

biochemical systems. Our method is based on the exploration of the so-called admissible region, that

is the set of parameters for which the mathematical model yields some required output. From the

shape of the admissible region, parameters that are really required in generating the output of the

system can be identified and hence retained in the model, whereas the rest is removed.

To describe the idea, first the admissible region of a very small artificial network with only three

nodes and three parameters is determined. Despite its simplicity, this network reveals all the basic

ingredients of our reduction method. The method is then applied to an epidermal growth factor

receptor (EGFR) network model. It turns out that only about 34% of the network components are

required to yield the correct response to the epidermal growth factor (EGF) that was measured in the

experiments, whereas the rest could be considered as redundant for this purpose. Furthermore, it is

shown that parameter sensitivity on its own is not a reliable tool for model reduction, because highly

sensitive parameters are not always retained, whereas slightly sensitive parameters are not always

removable.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Biochemical systems are usually very complex (Ross and
Arkin, 2009), consisting of hundreds to thousands components
with intricate interactions. A quantitative description of the
dynamics of such systems is canonically formulated in terms of
ordinary differential equations (ODEs). However, the usage of
such large systems of ODEs is often problematic, since one is faced
with the challenge to numerically solve a very large nonlinear set
of differential equations. The complexity of this task is often a
serious obstacle to get required information about the system. For
example, the possible presence of multiple time scales in huge
systems may result in unacceptably long computing times.
Furthermore, often the question arises how to interpret the
behavior of huge networks biologically.

At the level of the modeler, the problems are even more
serious, because a large number of interactions gives rise to a
large number of parameters. Of course, one may try to find values
for these parameters in the literature, but even if they can be
found, their reliability and applicability to the specific purpose is
often unknown. Furthermore, after all available information from
the literature is used to the limit, still a number of parameters
may remain that have to be fitted to data. Fitting procedures
require the system of ODEs to be solved iteratively, so it has
to be evaluated many times which is quite time consuming.
Other problems may involve the questions of identifiability,
sensitivity, and robustness. Therefore, there is a need for reduc-
tion methods that deliver simplified models that still capture the
essential dynamical behavior of the original system (Okino and
Mavrovouniotis, 1998; Klipp et al., 2009).

Complexity reduction can be carried out in several ways, and
the choice for the most appropriate approach depends on the
purpose one has in mind. For example, one may try to decompose
a large biochemical network into smaller submodules that have
relatively little interaction with each other (Hartwell et al., 1999;
Saez-Rodriguez et al., 2004, 2005, 2008; Conzelmann et al., 2004).
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In this way, the network becomes more manageable, easier to
analyze, and it could make sense to study and interpret the
modules separately. A large network can also be replaced by a
functional module that has lower dimension (less ODEs) but still
mimics the input–output behavior. This could be done, e.g., by
replacing the network by a black box model (Liebermeister et al.,
2005) or by lumping together components and/or reactions based
on their characteristics (Conzelmann et al., 2004; Danø et al.,
2006; Dokoumetzidis and Aarons, 2009; Sunnaker et al., 2010,
2011). A disadvantage of both black box modeling and lumping is
that the new reduced model may be structurally different from
the original one, e.g., a component in the new reduced model may
be a linear combination of several components in the original
model, or a component in the original model could be contained
in several new components in the reduced model. In practice, this
may obstruct us in interpreting the new reduced model.

Alternatively, complexity reduction can be carried out by
selecting only those components and/or reactions of the network
that determine the required dynamics of the system. This could
be done, e.g., by exploiting possible time-scale differences that are
often present in biological and chemical systems (Alon, 2007).
However, the classical time-scale separation such as in Roussel
and Fraser (2001), Kooi et al. (2002), and Radulescu et al. (2008)
for example, raises the question how to obtain the prior knowl-
edge that some reactions are fast and others are slow. On the
other hand, the automatic time-scale separation in Maas and Pope
(1992), Zobeley et al. (2005), and Surovtsova et al. (2009) requires
that the original system of equations is mathematically trans-
formed into another system before it can be reduced. This
transformation impedes the biological interpretation of the
reduced model.

One could also omit components and/or reactions that seem to
contribute little to the behavior of the network. These components
or reactions are usually selected via an optimization approach
(Petzold and Zhu, 1999; Androulakis, 2000; Bhattacharjee et al.,
2003) or a sensitivity analysis (Turányi et al., 1989; Turányi, 1990;
Tomlin et al., 1995; Smets et al., 2002; Liu et al., 2005). In the first
approach, given a nominal parameter values, it is investigated
whether some parameters can be set to zero without adjusting the
other ones. In the example given in Section 2.2 below, we show
that this approach may not always be successful, even if the
system is extremely simple. In the latter approach, the importance
of a particular parameter is measured by evaluating the effect of
variations in this parameter on the dynamics of all concentrations.
If the effect is large, the system is said to be highly sensitive to this
parameter. If, on the other hand, the sensitivity is low, this
parameter is considered unimportant and removable. However,
one should be careful with this kind of conclusions, since, e.g., the
omission of a low-sensitivity parameter may lead to useless
results. An example of this phenomenon is found in Chassagnole
et al. (2002) from a model of the central carbon metabolism of
Escherichia coli, for which the authors show that the sensitivity of
flux concentrations to some enzymes, e.g., aldolase, is nearly zero.
However, the removal of this reaction would result in the shut-
down of the whole network, which is of course undesirable. For
completeness’s sake, we also mention the somewhat different way
of reduction in which complicated mathematical expressions in
the ODE equations are replaced with simplified ones (Schmidt
et al., 2008; Ropers et al., 2011).

We present a novel reduction method that yields a biochem-
ical model with less equations and parameters and still generates
some required output. In this context, this output is interpreted as
the dynamical behavior of the concentrations of a number of
selected network components that are considered important for
biological questions at hand and are responsible for its functional
behavior. So, as data we take measured time series of some

constituents and we look for a reduced model that generates
these data. The reduction method proposed in this paper is based
on the exploration of the so-called ‘‘admissible region’’, that is the
region in the parameter space where the model outcomes match
the output data within some given tolerance. From the shape of
this admissible region important conclusions can be drawn. For
example, if this region includes a part of one of the parameter
axes, this parameter can apparently be set to zero. If, on the other
hand, this region extends to infinity in some direction, this
indicates that lumping of nodes might be allowed. These insights
form our starting point to obtain reduced networks. The proposed
method does not need to transform the original equations. It can
be applied to any system of equations, linear or nonlinear.
Contrary to the classical time-scale separation technique, this
method does not rely on prior biological knowledge; therefore, it
can be automated appropriately. On the other hand, the method
can be tuned easily to incorporate any available prior knowledge.
Our method also conserves the network structure and maintains
the dynamics of the system’s output and shows in this sense
similarities with the method from (Radulescu et al., 2008). Once a
reduced biologically plausible model has been obtained, para-
meter identification can be carried out more efficaciously.

This paper is organized as follows. In Section 2, we first
introduce the concept of an admissible region which forms the
basic concept in our reduction method. For illustrational purposes,
we use a very simple artificial metabolic network with only three
metabolites and three parameters. In spite of its simplicity, this
system appears to be rich enough to show all the basic ingredients
involved in the reduction process. Next we discuss how the
reduction can be carried out effectively, and we conclude this
section by formulating our algorithm. In Section 3, the reduction
method is applied to a signaling network model taken from
(Kholodenko et al., 1999). We show that this network can be
considerably reduced with regard to reproducing the time-series of
the key proteins. Furthermore, we demonstrate the surprising fact
that parameters with high sensitivity are not always necessary and
may be removed without any consequence for the purposes we
have in mind.

2. Methods

A mathematical model is considered good if it is able to
describe and predict the phenomena for which it has been
designed. Here, we assume that the dynamical behavior of some
components are essential for the predictive power of a model and
that their dynamics has been measured. This dynamics should be
preserved by any reduction method. In the following, we refer to
system components that are measured as ‘‘target species’’. These
target species play a pivotal role in the concept of admissible
region, which is the basis idea of our reduction method.

2.1. The concept of admissible region

Consider a collection of n chemical species that form a
biochemical network, the dynamics of which is modeled by a
system of ordinary differential equations (ODEs)

dx

dt
¼ fðx,k0Þ,

yðt,k0Þ ¼ Bxðt,k0Þ, ð1Þ

with initial values

xð0Þ ¼ x0: ð2Þ

Here xðtÞARn denotes the vector of biochemical concentrations, f
is the vector valued function representing the interactions, and
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