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a b s t r a c t

It has been shown that density functions of organ transit time distributions of vascular markers

(washout curves) are characterized by a power-law tail, reflecting the fractal nature of the vascular

network. Yet, thus far, no closed-form model is available that can be fitted to such organ outflow data.

Here we propose a model that accounts for the existing data. The model is a continuous mixture of

inverse Gaussian densities, implying flow heterogeneity in the organ. It has been fitted to outflow data

from the rabbit heart and rat liver. The power-law decay with exponent -3 observed in the heart,

corresponds to an intra-organ flow distribution with a relative dispersion of about 35%.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tracer washout experiments, i.e., the measurement of organ
outflow curves of tracers after impulse input, are an important
tool for investigating kinetic processes at the organ level
(Bassingthwaighte et al., 1998). Because an outflow curve of a
vascular marker represents the density of the transit time
distribution through the organ, resulting from the pathway length
and flow distribution in the vascular network, it was natural to
look for a suitable distribution function. There is some rationale
for the use of the density of the Brownian passage-time distribu-
tion (also called inverse Gaussian distribution) (Sheppard, 1962;
Weiss, 1997), and it could be shown that a mixture of two inverse
Gaussian densities (2IG) provided an excellent fit to outflow
concentration–time data of vascular markers in the perfused liver
(Weiss et al., 1997) and hindlimb (Weiss and Roberts, 1996) of
the rat.

The fractal character of washout curves was shown by Bas-
singthwaighte and colleagues for the heart, both experimentally
(Bassingthwaighte and Beard, 1995) and theoretically (Beard and
Bassingthwaighte, 1998; Beard and Bassingthwaighte, 2000).
Here, fractal essentially means ‘self-similar’, which was indicated
by the fact that the downslope of the outflow curves could be
fitted by power law function. Although the 2IG model fits the tail
of sucrose outflow curves from experiments performed in per-
fused livers (Weiss et al., 1997), it does not exhibit a power law

tail. Thus one could argue that this is in contrast to the fractal
properties of the hepatic sinusoidal network (Gaudio et al., 2005;
Warren et al., 2008). But the reason why power law tails have not
been observed in liver outflow curves may lay in the limited time
period of sampling. But there is another point why the 2IG model
appears not optimal from a theoretical point of view. Given the
flow heterogeneity in the liver, why should the distribution
function have only two components, and what is their meaning?
Here we propose an extension of the 2IG model, which is based on
a continuous mixture of IG distributions. The latter may reflect
flow distribution in the organ, similarly to the approach used by
Beard and Bassingthwaighte (1998). This new model has several
advantages: it exhibits a power law tail and contains less free
parameters than the 2IG model. We show that model fits avail-
able outflow data from the heart (Bassingthwaighte and Beard,
1995) and the liver (Weiss et al.,1997; 2010). To our knowledge
this is the first closed-form model that describes the whole
outflow curve, including the power-law tail.

2. Model development

2.1. Inverse Gaussian distributed transit times

A simple model for distribution of organ transit times of
vascular markers is the inverse Gaussian (IG) density function
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which emerges as a solution of the advection–dispersion equa-
tion, based on the assumption that the dispersion is purely
advective and determined by architecture of the vascular network
(Roberts et al., 2000; Weiss, 1997). The density f(t) of the random
transit time T through an organ is the normalized outflow
concentration ðf ðtÞ ¼ CðtÞ=

R1
0 CðtÞdtÞ, the mean transit time is

given by E(T)¼MTT¼V/Q (V and Q denote the vascular volume
and blood flow), and RD2

¼ VarðTÞ=MTT2 is the relative dispersion
of the transit time distribution (TTD) caused by geometrical
dispersion in the microcirculatory network. Because of the sig-
nificant limitation of not fitting the tail part of the liver outflow
curves, Eq. (1) has been extended into a mixture of two IG
densities (2IG)

f 2IGðtÞ ¼ pf 1ðtÞþð1�pÞf 2ðtÞ ð2Þ

which represents a two-point distribution with probability p of
outcome IG1 with parameters MTT1, RD2

1 and probability (1�p) of
outcome IG2 with parameters MTT2, RD2

2, where the IG with the
longer MTT accounts for the tail part (Weiss et al., 1997). Note
that both density functions, IG (Eq. (1)) and 2IG (Eq. (2)), exhibit
an exponential tail for t-N.

2.2. Incorporating flow heterogeneity

Let us assume that flow heterogeneity within an organ can be
modeled by a flow distribution across subsystems (pathways)
which exhibit an IG transit time density and are characterized by
the same volume Vi and dispersion RD2

i . In deriving the mixture of
inverse Gaussians, based on a continuous flow distribution, we
follow the approach by Desmond and Yang (2010), who derived
this model in a completely different context. Using the IG (Eq. (1))
in a reparameterized form,
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where
k¼1/MTTi¼Qi/Vi and l¼MTTi=RD2

i , and assuming that k
obeys a normal distribution with mean k and variance v/l, i.e.,
RD2

k ¼ v=ðlk2
Þ, the transit time density is obtained as
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where the density of the distribution of the variable k is denoted
by gðk; d,vÞ. Since this integral, which was first evaluated by
Whitmore (1986), is the density of a defective distribution,
Desmond and Yang (2010) derived a proper density assuming a
truncated normal distribution to avoid that k can take negative
values. The normalization factor then depends on t and the
parameters, and the inverse Gaussian-normal mixture density
(mixIG) of the transit times was obtained as h(t)� fmixIG(t),
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where the normalization factor is given by
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and F is the cumulative normal distribution function.

3. Fitting of mixIG to tracer data

The mixIG model (Eq. (5)) was fitted to outflow data from
single-pass perfused rabbit heart and rat liver experiments.
Washout data of [15O] water measured in isolated, blood-perfused
rabbit heart were obtained by digitization from the graph

published by Bassingthwaighte and Beard (1995). Hepatic outflow
data of the extracellular markers [14C] sucrose and [125I] bovine
serum albumin stem from experiments in red blood cell perfused
(Weiss et al., 2010) and buffer perfused (Weiss et al., 1997) rat
livers, respectively. Curve fitting was done using ADAPT5
(D’Argenio et al., 2009) and maximum likelihood analysis with
the variance model VARi¼[s0þs1C(ti)]

2; where VARi is the var-
iance of the ith data point and C(ti) is the model prediction.
Precision of parameter estimates is indicated by their asymptotic
(approximate) standard deviations. Model simulations were done
with MAPLE 8 (Waterloo Maple, Waterloo, ON, Canada).

4. Results

4.1. Fitting experimental data

Fig. 1 shows the fit of the mixIG model (Eq. (5)) to the ouflow
data of labeled water measured by Bassingthwaighte and Beard
(1995) in rabbit heart. The model fits very well the whole range of
experimental data (Fig. 1(A)) and exhibits a power law tail,
h(t)�t�3.1, for t4100 s (Fig. 1(B)). Typical results of model fits
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Fig. 1. (A) Plot of washout data of tracer-labeled water from the rabbit heart.

(Fig. 3 in Bassingthwaighte and Beard, (1995)) together with the fitted curve

(mixIG model, h(t)). (B) Log–log plot of the fitted curve showing the power-law

decline.
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