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a b s t r a c t

Combining different theoretical approaches, curvature modulated sorting in lipid bilayers fixed on non-

planar surfaces is investigated. First, we present a continuous model of lateral membrane dynamics,

described by a nonlinear PDE of fourth order. We then prove the existence and uniqueness of solutions

of the presented model and simulate membrane dynamics using a finite element approach. Adopting a

truly multiscale approach, we use dissipative particle dynamics (DPD) to parameterize the continuous

model, i.e. to derive a corresponding macroscopic model.

Our model predicts that curvature modulated sorting can occur if lipids or proteins differ in at least

one of their macroscopic elastic moduli. Gradients in the spontaneous curvature, the bending rigidity or

the Gaussian rigidity create characteristic (metastable) curvature dependent patterns. The structure

and dynamics of these membrane patterns are investigated qualitatively and quantitatively using

simulations. These show that the decomposition time decreases and the stability of patterns increases

with enlarging moduli differences or curvature gradients. Presented phase diagrams allow to estimate if

and how stable curvature modulated sorting will occur for a given geometry and set of elastic parameters.

In addition, we find that the use of upscaled models is imperative studying membrane dynamics. Compared

with common linear approximations the system can evolve to different (meta)stable patterns. This

emphasizes the importance of parameters and realistic dynamics in mathematical modeling of biological

membranes.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Biological membranes define a mechanical boundary of cells
and of substructures inside cells. They provide environments
specialized for certain chemical or mechanical processes. The
main component of membranes is lipid molecules. In water lipids
form, due to hydrophobic interactions, a bilayer structure con-
sisting of two lipid monolayers physically opposed to each other.
Since membrane molecules can move freely in lateral direction of
the membrane, its lateral behavior can be compared to a two-
dimensional (2D) fluid, first described in the ‘fluid mosaic’ model
by Singer and Nicolson (1972). With respect to bending the
membrane behaves elastically and in the linear regime is well
described by the plate equation (Ciarlet, 1997).

In vivo, biological membranes are composed of many different
lipids, proteins and other molecules with different functions

(Alberts et al., 2006). Lateral sorting of these components is
essential for maintaining the diversity of different membrane
systems inside the cell as well as their function (Gennis, 1989).
For both, lipids (Baumgart et al., 2003) and proteins (Bonifacino
and Lippincott-Schwartz, 2003) lateral phase separation and
clustering have been shown. It is widely accepted that membrane
curvature modulated sorting is a basal mechanism controlling the
spatial organization of lipids and proteins in the absence of
specific chemical interactions. However, the exact underlying
mechanisms remain mostly unknown (Tian and Baumgart, 2009).

Different membrane model systems, whose geometry, size and
composition can be modified in a defined way, have been used to
investigate curvature dependent sorting on different scales,
experimentally as well as theoretically: experiments with artifi-
cial membranes have been performed using unilamellar vesicles
(Baumgart et al., 2003; Heinrich et al., 2010; Kamal et al., 2009;
Pencer et al., 2008; Roux et al., 2005; Tian and Baumgart, 2009) as
well as solid supported membranes (Parthasarathy et al., 2006;
Yoon et al., 2006). On the theoretical side, molecular dynamical
approaches have been used to investigate the impact of molecular
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parameters (Cooke and Deserno, 2006; Risselada and Marrink,
2009). But these are limited to small spatial and temporal scales
due to computational complexity of the corresponding models. To
investigate upper scales and to compare experiments with analy-
tical estimates different continuous approaches have been devel-
oped (Bozic et al., 2006; Derganc, 2007; Rózycki et al., 2008;
Seifert, 1993; Mercker et al., 2011), mainly based on the mini-
mization of a free energy. A curvature dependent free energy of
lateral homogeneous membranes has been early described by
Helfrich (1973)

FHelfrich ¼

Z k
2
ðH�H0Þ

2 doþ
Z

kGK do, ð1Þ

where do depicts the surface measure, H the mean curvature and
K the Gaussian curvature, both depending on the geometry of the
membrane. If C1 and C2 are the two principal curvatures, H is
defined as their sum and K as their product (see also Fig. 1).
H0,k,kG are the elastic moduli, which are constant if the mem-
brane is lateral homogeneous. H0 is the spontaneous curvature
and represents the preferred curvature in the relaxed state. It is
non-zero e.g. if membrane molecules are wedge-shaped. k and kG

are the bending rigidity and the Gaussian rigidity (often referred
to as the saddle-splay modulus), respectively. Both represent the
stiffness of the membrane: in tubular structures (were K

vanishes; cf. Fig. 1B) k penalizes curvatures; in saddle structures
(were H vanishes; cf. Fig. 1A) kG causes a penalty of curvatures. In
general structures both moduli contribute to the energy penalty
of curved membranes and most of the geometries appearing in
biological membranes exhibit various intermediate structures of
tubes, saddle structures and spheres (Fig. 1A–C).

Considering non-homogeneous membranes, it has been shown
that gradients in elastic moduli can exhibit a driving force for
lateral curvature modulated sorting. Membrane proteins are
drawn to regions with curvature adapted to the protein shape
(Ramaswamy et al., 2000) and lipids with small bending rigidity
are sorted to highly curved membrane regions (Parthasarathy
et al., 2006), thus that lateral reorganization reduces the mem-
brane curvature energy. Although various theoretical and experi-
mental studies have been performed to investigate lateral sorting
due to gradients in spontaneous curvature (Bozic et al., 2006;
Cooke and Deserno, 2006; Derganc, 2007; Kamal et al., 2009;
Leibler, 1986; Liang and Ma, 2009; Ramaswamy et al., 2000;
Risselada and Marrink, 2009; Seifert, 1993) and bending rigidity
(Baumgart et al., 2003; Derganc, 2007; Parthasarathy et al., 2006;
Roux et al., 2005; Rózycki et al., 2008), the impact of the elusive
Gaussian rigidity on lateral sorting has not been investigated so
far. However, experimental studies show that different mem-
brane components can differ distinctly in their Gaussian rigidities
(Semrau et al., 2008).

In this study, we investigate theoretically the impact of an
inhomogeneous Gaussian rigidity on lateral sorting and compare

it with sorting due to gradients in the bending rigidity and
spontaneous curvature. Following the experimental approach of
Parthasarathy et al. (2006) and Roux et al. (2005), we consider
membranes attached to non-planar substrates. Thus by consider-
ing a geometrically fixed membrane the complexity is reduced
facilitating the extraction of hypotheses to be checked by experi-
mentalists. To do so, a continuous model of lateral membrane
dynamics, based on the minimization of a free energy, is derived.
Considering a gradient flow of the free energy, we obtain a model
in terms of a nonlinear PDE of fourth order, related to the Cahn–
Hilliard equation (Cahn and Hilliard, 1958) (cf. Elliott and Garcke,
1996; Elliott and Songmu, 1986 for analytical results). In the
following, we show that unique solutions exist and approximate
them using a finite element approach. Adopting a multiscale
approach, parametrization of the continuous model from the
molecular scale has been achieved via upscaling from dissipative
particle dynamic (DPD) studies. On the basis of this multiscale
modeling approach, simulations are performed comparing dynamics
and (metastable) patterns of lateral sorting.

2. Theoretical model

2.1. Continuous approach

Following the ideas of Parthasarathy et al. (2006) and Roux
et al. (2005), we consider a curved membrane represented by a
fixed smooth Riemannian manifold G—in contrast to free mem-
branes typically studied (Baumgart et al., 2003; Heinrich et al.,
2010; Kamal et al., 2009; Pencer et al., 2008; Roux et al., 2005;
Tian and Baumgart, 2009), where G itself is evolving in time. Here,
we consider a membrane composed of two different molecule
species, e.g. two different lipids or lipids and proteins. The
concentration of the two components fA and fB in G is described
by the order parameter f : G-½�1;1�, where f¼fA

�fB. That is,
if f¼ 1 the membrane is locally composed purely of species A and
if f¼�1 locally only species B is present.

It has been shown that sorting depends critically on mem-
brane curvature and phase separation (in the absence of specific
signals actively influencing lateral dynamics) (Parthasarathy
et al., 2006; Roux et al., 2005). Therefore our model is based on
the minimization of a free energy F ¼ F1þF2 containing both a
curvature depending energy F1 (related to Helfrich, 1973) and a
Cahn–Hilliard energy F2 (Cahn and Hilliard, 1958) modeling
lateral phase separation. In detail, both parts read

F1 ¼
1

2

Z
G
kðfÞðH�H0ðfÞÞ2 doþ

Z
G
kGðfÞK do,

F2 ¼ ~s
Z
G

x2

2
ðr

GfÞ2þ f ðfÞ

 !
do:

ð2Þ

Describing the fact that different components may differ in their
mechanical properties (such as shape and stiffness), each macro-
scopic elastic modulus h ðhAfk,kG,H0gÞ is taken as a function of
the concentration f. Each function h is chosen such that hð1Þ ¼ hA

and hð�1Þ ¼ hB, where hA and hB are the elastic moduli of the pure
components. Furthermore, x is a transition length, s¼ ~sx the
line-tension, rG the surface gradient and f a double well poten-
tial. The function f : R-Rþ is of the form f ðfÞ ¼ 9

32 ðf
2
�1Þ2.

Instead of minimizing F ¼ F1þF2 directly we adopt a dynamic
point of view. Thus assuming local mass conservation lateral
dynamics of the two species A and B are determined by the lateral
continuity equation

@tfþr
G
� j
!
¼ 0,

Fig. 1. Principle curvatures C1 ,C2, mean curvature H¼ C1þC2 and Gaussian

curvature K ¼ C1C2 for different geometries: (A) saddle, (B) tube, (C) sphere.
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